
50

Generation-based Differential Fuzzing for Deep Learning

Libraries

JIAWEI LIU, State Key Laboratory for Novel Software Technology, Nanjing University, China

YUHENG HUANG and ZHIJIE WANG, University of Alberta, Canada

LEI MA, The University of Tokyo, Japan and University of Alberta, Canada

CHUNRONG FANG, MINGZHENG GU, XUFAN ZHANG, and ZHENYU CHEN, State Key

Laboratory for Novel Software Technology, Nanjing University, China

Deep learning (DL) libraries have become the key component in developing and deploying DL-based software

nowadays. With the growing popularity of applying DL models in both academia and industry across various

domains, any bugs inherent in the DL libraries can potentially cause unexpected server outcomes. As such,

there is an urgent demand for improving the software quality of DL libraries. Although there are some existing

approaches specifically designed for testing DL libraries, their focus is usually limited to one specific domain,

such as computer vision (CV). It is still not very clear how the existing approaches perform in detecting bugs of

different DL libraries regarding different task domains and to what extent. To bridge this gap, we first conduct

an empirical study on four representative and state-of-the-art DL library testing approaches. Our empirical

study results reveal that it is hard for existing approaches to generalize to other task domains. We also find

that the test inputs generated by these approaches usually lack diversity, with only a few types of bugs.

What is worse, the false-positive rate of existing approaches is also high (up to 58%). To address these issues,

we propose a guided differential fuzzing approach based on generation, namely, Gandalf. To generate testing

inputs across diverse task domains effectively, Gandalf adopts the context-free grammar to ensure validity and

utilizes a Deep Q-Network to maximize the diversity. Gandalf also includes 15 metamorphic relations to make

it possible for the generated test cases to generalize across different DL libraries. Such a design can decrease

the false positives because of the semantic difference for different APIs. We evaluate the effectiveness of

Gandalf on nine versions of three representative DL libraries, covering 309 operators from computer vision,

natural language processing, and automated speech recognition. The evaluation results demonstrate that

Gandalf can effectively and efficiently generate diverse test inputs. Meanwhile, Gandalf successfully detects

five categories of bugs with only 3.1% false-positive rates. We report all 49 new unique bugs found during

This work is supported partially by National Natural Science Foundation of China (61932012, 62141215, 62372228), CCF-

Huawei Populus Grove Fund (CCF-HuaweiSY202306), Science, Technology and Innovation Commission of Shenzhen Mu-

nicipality (CJGJZD20200617103001003), Canada CIFAR AI Chairs Program, the Natural Sciences and Engineering Research

Council of Canada (NSERC No. RGPIN-2021-02549, No. RGPAS-2021-00034, No. DGECR-2021-00019), as well as JST-Mirai

Program Grant No.JPMJMI20B8, JSPS KAKENHI Grant No.JP21H04877, No. JP23H03372.

Authors’ addresses: J. Liu, C. Fang (Corresponding author), M. Gu, X. Zhang, and Z. Chen, State Key Laboratory for

Novel Software Technology, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, China, 210093; e-mails: jw.liu@smail.

nju.edu.cn, fangchunrong@nju.edu.cn, {MF21320043, zhangxufan}@smail.nju.edu.cn, zychen@nju.edu.cn; Y. Huang and

Z. Wang, University of Alberta, 9211 116 Street NW, Edmonton, Alberta, Canada, T6G 1H9; e-mails: {yuheng18, zhijie.

wang}@ualberta.ca; L. Ma, The University of Tokyo, 7 Chome-3-1 Hongo, Tokyo, Tokyo, Japan, 113-8654 and University

of Alberta, 9211 116 Street NW, Edmonton, Alberta, Canada, T6G 1H9; e-mail: ma.lei@acm.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/12-ART50 $15.00

https://doi.org/10.1145/3628159

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

https://orcid.org/0000-0002-4930-9637
https://orcid.org/0000-0003-3666-4020
https://orcid.org/0000-0003-4559-5426
https://orcid.org/0000-0002-8621-2420
https://orcid.org/0000-0002-9930-7111
https://orcid.org/0009-0000-5141-8923
https://orcid.org/0000-0001-7284-1931
https://orcid.org/0000-0002-9592-7022
mailto:permissions@acm.org
https://doi.org/10.1145/3628159
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3628159&domain=pdf&date_stamp=2023-12-23

50:2 J. Liu et al.

the evaluation to the DL libraries’ developers, and most of these bugs have been confirmed. Details about our

empirical study and evaluation results are available on our project website.1

CCS Concepts: • Software and its engineering→ Software testing and debugging;

Additional Key Words and Phrases: Software testing, deep learning libraries, generation-based fuzzing

ACM Reference format:

Jiawei Liu, Yuheng Huang, Zhijie Wang, Lei Ma, Chunrong Fang, Mingzheng Gu, Xufan Zhang, and Zhenyu

Chen. 2023. Generation-based Differential Fuzzing for Deep Learning Libraries. ACM Trans. Softw. Eng.

Methodol. 33, 2, Article 50 (December 2023), 28 pages.

https://doi.org/10.1145/3628159

1 INTRODUCTION

Deep learning (DL) libraries are foundational infrastructures for developing DL-based software
in various domains, e.g., autonomous driving [55], medical diagnosis [12], and speech recogni-
tion [17]. To ease developers’ work, DL libraries usually encapsulate complex DL algorithms into
DL operators and provide these operators in the form of Application Programming Interfaces

(APIs) [29]. The development process of DL software hence becomes more efficient, and DL
libraries significantly reduce the learning cost for developers [61]. While the recent advance in
DL libraries also drew much attention to their qualities. In practice, bugs usually exist in the
operators of DL libraries. Once the buggy operators are used in DL software, even a simple bug
can lead vast amounts of software to severe performance issues and degradation [1]. Considering
that DL software could be used in various industrial applications, the quality assurance of DL
libraries has become an urgent and essential need.

To address this, several recent attempts have been made to test DL libraries, among which
a majority of these works adopt the differential fuzzing strategy [22, 24, 48, 58]. In the context
of fuzzing DL libraries, a DL model with corresponding tensor data automatically generated
from a seed model is considered as a test input [61]. A seed model is selected from existing task
domain and built with DL library operators. Differential testing employs the same test input to
run different DL libraries and measures the difference between their outputs. Any unexpected
behavior (e.g., crashes, inconsistent outputs) indicates a bug [63]. However, even though the
existing testing approaches have shown promising performance in some scenarios, it remains
unclear how these approaches would work when testing DL libraries with seed models from a
wide range of task domains. To bridge this gap, we first conduct an empirical study. In the study,
we investigate how the differential and fuzzing techniques in the existing work have contributed
to detecting bugs in different DL libraries. To this end, we leverage four representative testing
approaches [8]: (1) CARDLE [48], (2) AUDEE [24], (3) LEMON [58], and (4) MUFFIN [22] to test
120 operators from four deep learning libraries: TensorFlow, Theano, CNTK, and MXNet. These
approaches cover four different implementations frequently used in DL library testing. Our study
aims to answer the following two research questions:

— RQ1 (seeds of existing approaches): How does fuzzing affect DL library testing? How do
the seeds of fuzzing affect the existing testing approaches in different domains?

— RQ2 (bugs found by existing approaches): What kind of bugs can be found by the existing
approaches? Do the existing differential approaches trigger any false positives?

1https://sites.google.com/view/gandalf4dll

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

https://doi.org/10.1145/3628159
https://sites.google.com/view/gandalf4dll

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:3

Since the existing approaches for testing DL libraries rely on the seeds of fuzzing, RQ1 is
proposed to evaluate the performance of these fuzzing approaches. To answer RQ1, we utilize
seed models from three task domains, i.e., computer vision (CV), natural language processing

(NLP), and automated speech recognition (ASR) domains. We find that seed models employed
by the existing fuzzing approaches have obvious impacts on testing effectiveness (i.e., the
number of detected bugs). In addition, since the test inputs generated by the existing approaches
are highly similar, the bug-triggering inputs generated by the existing fuzzing approaches may
lack diversity. As a result, the capability of bug detection is limited. Considering the existing DL
library testing approaches adopt the differential technique for identifying bugs, RQ2 is proposed
to evaluate the performance of these differential approaches. To answer RQ2, we analyze the
detected bugs in RQ1 and group them into four categories: (1) implementation bugs, (2) imple-
mentation differences, (3) precision bugs, and (4) random errors. Among the four categories, bugs
related to implementation differences and random errors are false positives rather than real bugs.
We find that most detected bugs of previous work are false positives caused by implementation
differences such as initialization differences, data format differences, operator setting differences,
and so on. Since the existing testing approaches do not take any solutions to address the DL
library implementation differences, they may raise false positives caused by the flawed differential
setting.

Our findings from the empirical study motivate us to propose and investigate a novel technique
named Gandalf, a generation-based differential fuzzing approach for DL libraries. To ensure the

effective test inputs generation in different domains, Gandalf generates test inputs by combining
different operators following the context-free grammar (CFG) of DL models in different domains.
Gandalf further employs a Deep Q-Network (DQN) as the guidance for combination to achieve
high diversity. To reduce false positives caused by implementation differences and ensure the
test inputs are equivalent for differential testing, we design equivalent metamorphic relations

(MRs) for Gandalf according to initialization transformation, data format transformation, and
setting transformation. With the support of equivalent MRs, Gandalf can automatically transfer
operator graphs for different DL libraries. These equivalent MRs could also be generalizable to a
large number of operators and DL libraries.

To evaluate the performance of Gandalf, we use Gandalf to test three representative open-source
DL libraries with different development paradigms, i.e., TensorFlow with static graphs, PyTorch
with dynamic graphs, and Jittor with fusion graphs. Our testing covers 309 different operators.
Overall, we investigate the following three research questions when evaluating Gandalf:

• RQ3 (effectiveness): How does Gandalf perform in detecting bugs of DL libraries?

Does Gandalf reduce the effect of seed models from different task domains? In RQ3,
we conduct an evaluation to investigate the effectiveness of Gandalf on different task do-
mains. Our experiment shows that Gandalf can effectively detect bugs in DL libraries of
different domains. During the evaluation, we find 49 new unique bugs. We report all of them
to library developers and receive positive confirmations on these bugs.
• RQ4 (diversity and efficiency): Can Gandalf generate diverse test inputs efficiently?

In RQ4, we evaluate whether Gandalf can provide a significant enhancement in diversity
while ensuring efficiency, compared with existing approaches. Our experimental results
show that Gandalf can significantly enhance the diversity by a maximum of 80% and achieve
higher efficiency (up to five times compared with other approaches).
• RQ5 (bug categories): What kinds of bugs are found by Gandalf? How does Gandalf

perform in dealing with the false positives? In RQ5, we manually analyze the categories
of the bugs detected by Gandalf and evaluate whether Gandalf could reduce false positives.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:4 J. Liu et al.

According to the results, Gandalf can detect bugs varied in five categories, while the majority
are precision problems. Gandalf can also avoid all the false positives caused by implementa-
tion differences.

To summarize, this article makes the following contributions:

• We conduct an empirical study on four state-of-the-art approaches for testing DL libraries.
We find that existing approaches suffer from the potential of ineffectiveness in certain task
domains, lacking of diversity and usually triggering a lot of false positives.
• We propose the first guided differential fuzzing approach based on generation for deep learn-

ing libraries with the context-free grammar and deep Q-network to address the challenge in
the existing approaches.
• We design 15 practical cross-libraries equivalent metamorphic relations for differential test-

ing of deep learning libraries to reduce the false positive rates.
• We implement our approach as an open-source tool, Gandalf, and release our data to facili-

tate further development of deep learning libraries.
• We conduct an extensive evaluation on Gandalf with three representative DL libraries and

models from CV, NLP, and ASR domains. The evaluation results demonstrate the effective-
ness and efficiency of Gandalf when testing DL libraries by generating diverse test inputs
and reducing the false positives significantly.

2 BACKGROUND

2.1 Differential Fuzzing for DL Libraries

Differential fuzzing is the technique for testing DL libraries by taking the advances of both fuzzing
and differential testing. Fuzzing refers to an iterative process of testing the target DL libraries
with test inputs (i.e., DL models) produced elaborately [38]. Differential testing aims to provide
oracles for inputs by cross-checking the consistency of the corresponding outputs from different
DL libraries [23].

Figure 1 shows a typical workflow of the differential fuzzing for testing DL libraries. The
challenges of differential fuzzing for testing DL libraries mainly lie in generating test inputs and
analyzing test outputs [61]. The approaches for producing test inputs include generation-based
and mutation-based approaches [53]. The generation-based and mutation-based fuzzing are
two common approaches to produce test inputs in fuzzing [38]. The generation-based fuzzing
produces test inputs based on a given constraint that describes the expected inputs, such as a
grammar precisely characterizing the input format or less precise constraints such as magic values
identifying file types. The mutation-based fuzzing produces test inputs by mutating or modifying
existing inputs, e.g., altering, deleting, or replacing a subset of the input data. Some of the existing
work employs mutation-based approaches to mutate existing DL models with manually designed
mutation rules, e.g., LEMON [58] and AUDEE [24]. For mutation-based fuzzing, a well-formed
corpus of seed models is required. However, it is difficult and time-consuming to manually design
seed models covering diverse combinations of operators in DL libraries. In fact, existing work only
takes a limited number of models as a seed corpus; while, in this article, we propose a generation-
based approach for DL library testing by producing diverse test inputs following context-free

grammar.
As each DL library under testing usually involves a self-defined input format, a unique challenge

for differential testing of DL libraries is how to ensure the models deployed to each library are
identical. Different from existing work relying on existing model converters, we propose a series
of equivalent metamorphic relations to ensure identical models (seeds) are deployed when testing
different DL libraries.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:5

Fig. 1. Differential fuzzing for testing DL libraries.

2.2 Equivalent Metamorphic Relations

The metamorphic relation (MR) is an important technique in metamorphic testing (MT) [11].
MRs specify how particular changes to the input of the software under test would change the
output [64]. Generally speaking, an MR for a function f is expressed as a relation among a series
of inputs x1,x2, . . . ,xn , where n > 1, and their corresponding outputs f (x1), f (x2), . . ., f (xn) [49].
For example, a mathematical property of sin(·), i.e., sin(x) ≡ sin(π − x) could be used to design
an MR. When it is difficult to determine the expected output of sin(1) when testing the function
sin(·), the mathematical property of sin(·)MR can help test sin(·) by checking whether sin(1) equals
sin(π − 1).

The equivalent MRs are widely adopted in software testing, e.g., compiler testing [16, 33]. In
compiler testing, given certain test inputs (i.e., programs), it is difficult to determine the expected
outputs without manual efforts [9]. To alleviate such a problem, researchers propose a set of
equivalent transformation rules and apply them to generate equivalent test inputs [44]. Given
original test inputs I1 and its equivalent inputs I2, the compiler C under test should produce
the same outputs C (I1) and C (I2), i.e., I1 ≡ I2 ⇒ C (I1) ≡ C (I2) [54]. Inspired by the success of
equivalent MRs in compiler testing, in this article, we employ equivalent MRs to create equivalent
cross-library test inputs, i.e., equivalent DL models.

3 EMPIRICAL STUDY

3.1 Empirical Study Setup

To identify the current situation and challenges in differential fuzzing for testing DL libraries,
we conduct an empirical study to understand how the differential and fuzzing techniques have
contributed to the existing approaches. Our study is based on the results from using existing
approaches [8], i.e., CRADLE [48], LEMON [58], AUDEE [24], and MUFFIN[22] in the same time
period (i.e., one hour, as mentioned in their documents). These baselines cover four different
implementations frequently used in DL library testing. Specifically, CRADLE employs 16 seed
models as inputs. LEMON designs a heuristic-based fuzzing part with mutated inputs from 12
seed models. Both CRADLE and LEMON employ a differential part with front-end Keras to
switch back-end libraries. AUDEE designs a search-based fuzzing part with 7 seed models and a

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:6 J. Liu et al.

Table 1. The Basic Information of the Seeds and Datasets

Domain Dataset Size DNNs No.

CV

CIFAR-10 [32] 60,000 images AlexNet #1

Fashion-MNIST [60] 70,000 images LeNet5 #2

MNIST [34] 60,000 images LeNet5 #3

ImageNet [14] 1,500 images

ResNet50 #4

DenseNet121 #5

MobileNetV1 #6

InceptionV3 #7

VGG16 #8

VGG19 #9

Xception #10

NLP
Imdb [37] 50,000 reviews LSTM #11

Reuters 11,228 reviews LSTM #12

ASR Common Voice3
12 hours of

audio clips

wav2vec2.0 #13

ContextNet #14

differential part with model converter MMdnn to transfer mutated inputs to multiple DL libraries.
MUFFIN summarizes two model structure templates from neural architecture search [18] to fuzz
the test inputs. After analyzing the four baselines we selected, we find that CRADLE and LEMON
can be applied to TensorFlow, Theano, CNTK, and MXNet. AUDEE can be applied to TensorFlow,
Theano, CNTK, and PyTorch. MUFFIN can be applied to TensorFlow and Theano. As a result,
we select all DL libraries that could be tested by at least three approaches, including TensorFlow
1.14.0 [2], CNTK 2.7.0 [50], Theano 1.0.4 [3], and MXNet 1.5.1 [10], with the same settings in
References [24, 48, 58]. To have a comprehensive understanding of the effects of different seed
models in the fuzzing part of the existing approaches, we select 14 seed models, with a total
of 120 operators, from different domains including computer vision (CV), natural language

processing (NLP), and automated speech recognition (ASR), covering 8 datasets. Speech, text
and image data are the common data in the mentioned domains and could cover a large number of
DL tasks including image classification, object detection, text classification, machine translation,
speech recognition, and so on. As a result, we select eight datasets in our experiments to cover
the above-mentioned data domains. Table 1 gives the basic information of the seeds and datasets,
including (1) the domain information provided by developers, (2) the dataset name, (3) the size of
the dataset, and (4) the seed name. All these seed models are non-trivial. These datasets contain
thousands to hundreds of thousands of commonly used data.

We investigate the following two research questions in this empirical study.
RQ1: How does fuzzing affect the DL library testing? How do the seeds of fuzzing affect

the existing testing approaches in different domains? To answer RQ1, we first need to find
models that cover a representative set of operators as seeds, as it is difficult to exhaust the set
of operators that are constantly updated. To achieve this, we study how frequently the different
operators are used in the open-source community (by 2022.08). We select operators with high fre-
quency as representative operators and use models that cover these operators as seeds. We further
conduct a study on four state-of-the-art approaches for testing DL libraries, i.e., CRADLE [48]
(a random differential fuzzing technique), LEMON [58] (a guided differential fuzzing technique
based on mutation), AUDEE [24] (a guided differential fuzzing technique based on mutation), and

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:7

MUFFIN [22] (a random differential fuzzing technique based on neural architecture search) with
these seeds. The four methods are selected based on different types of fuzzing techniques. We
analyze the number of effective test inputs and unique bugs found by these approaches. However,
the mutated test inputs may be duplicated and in-diversified (e.g., inputs mutated from the same
seed with the same mutation parameters). The lack of test input diversity in DL library testing
could lead to the insufficient exploration of input space and low effectiveness in detecting bugs.
To measure the diversity, we define the diversity of the DL library test inputs, i.e., DL models.
Considering that DL models are implemented with the structure of graphs, the diversity of DL
models is measured by the graph edit distance. The definition of diversity is shown as follows:

Definition 1 (Diversity of DL Models). Given a set of DL models M = M0,M1, . . ., the diversity
of M could be defined as the average extent to which all the models M0,M1, . . . in M differ from
each other, i.e.,

diversity (M) = avд(|M0 −M1 |, |M0 −M2 |, . . .), (1)

where |M0 − M1 | denotes the minimum number of operator modifications required to complete
the interconversion between model M0 = (O00,O01, . . . ,O0i) and model M1 = (O10,O11, . . . ,O1j),
which could be measured as follows:

|M0 −M1 | =modOp (i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

max(i, j), if min(i, j) = 0

min

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

modOp (i − 1, j) + 1
modOp (i, j − 1) + 1
modOp (i − 1, j − 1) + 1(O0i�O1j)

if min(i, j) � 0
. (2)

RQ2: What kind of bugs can be found by the existing approaches? Do the existing ap-

proaches trigger any false positives? In RQ2, we aim to study the bug categories detected by
existing approaches and investigate if there are false positives of bugs. To achieve this, we manually
check whether a bug is a false positive with five professional engineers (three for coding check-
ing and two for algorithm checking). Specifically, we adopt different analysis methods depending
on the bug symptoms. For symptoms with crashes, we leverage the error message to analyze the
causes. For symptoms with NaN/INF (numerical errors) and IC (inconsistent outputs), we
trace the output of libraries on each computation to analyze the causes.

3.2 Empirical Results for Answering RQ1

Table 2 shows the empirical results of CRADLE (C), LEMON (L), AUDEE (A), and MUFFIN

(M) on four DL libraries. For each approach, we calculate the number of effective test inputs (I)

and unique bugs (B) found during the study. Considering the different effective test inputs may
trigger the same bug, chances are that the number of unique bugs is smaller than that of effective
test inputs. We further calculate the mean edit distance (mED) of each approach as an indicator
of diversity. Most of the mEDs are 0, referring to the duplicated test inputs.

From the perspective of the fuzzing DL libraries, we have several interesting findings:

• Finding 1.1. The testing effectiveness (i.e., the number of detected bugs) is signifi-

cantly affected by seeds from different task domains. For example, CRADLE fails to
detect any bugs of DL libraries in the NLP domain and MUFFIN cannot work in the ASR
domain and MXNet. Even within the same domain, existing approaches perform differently
with different seeds, e.g., AUDEE fails to detect bugs with mutation seed {#11, #12} while suc-
ceeds with seed #5. Therefore, it is necessary to involve seeds from different task domains
when generating test inputs.
• Finding 1.2. The inputs that trigger bugs lack diversity. Since most of the test inputs

of existing approaches are generated from given seeds by mutations or templates, the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:8 J. Liu et al.

Table 2. The Number of Effective Inputs (I) and Unique Bugs (B) on Each Library (CRADLE [48],

LEMON [58], AUDEE [24]), and MUFFIN [22])

No.

TensorFlow CNTK MXNet Theano Edit Distance

C L A M C L A M C L A M C L A M
C L A M

I B I B I B I B I B I B I B I B I B I B I B I B I B I B I B I B

#1 3 2 38 16 1 0 0 0 1 0 12 1 1 0 1 0 1 1 16 2 1 0 - - 13 0 12 1 1 0 5 3 0 1.5 2.25 2.6

#2 0 0 8 4 0 0 1 0 2 2 0 0 2 1 1 0 0 0 8 5 0 0 - - 0 0 8 5 0 0 4 2 0 1 1.5 3

#3 0 0 7 0 0 0 0 0 2 2 7 0 2 1 0 0 0 0 7 0 0 0 - - 0 0 7 0 0 0 7 2 0 0.8 1.1 2.3

#4 25 4 0 0 21 2 1 0 0 0 1 0 23 2 21 7 25 2 1 0 0 0 1 0 0 0.04 0.07

#5 24 3 1 0 21 2 1 0 1 0 1 0 9 2 1 0 5 2 5 1 1 0 6 2 0 0 1

#6 1 0 0 0 1 0 1 0 0 0 1 0 1 0 39 13 1 0 1 0 0 0 1 0 0 0.13 0.5

#7 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 - - 1 0 1 0 1 0 2 2 0 0 0 2.4

#8 6 2 10 0 5 1 1 0 10 0 1 0 5 1 10 0 4 1 4 2 10 0 4 0 0 0 0

#9 0 0 5 0 0 0 1 0 5 0 1 0 1 0 5 0 1 0 0 0 5 0 0 0 0 0 0

#10 0 0 10 3 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0.1 1.5

#11 0 0 20 12 0 0 0 0 1 0 21 12 1 0 2 0 0 0 29 12 0 0 - - 0 0 0 0 0 0 5 3 0 2.2 3.3 2

#12 0 0 25 21 0 0 0 0 1 0 23 17 1 0 1 0 0 0 34 25 0 0 - - 0 0 0 0 0 0 6 4 0 4 2.1 2.9

#13 1 1 3 2 0 0 - - 1 0 2 1 1 0 - - 0 0 2 1 0 0 - - 0 0 0 0 0 0 - - 0 1.1 1.65 -

#14 2 1 1 1 1 0 - - 1 0 1 1 1 0 - - 0 1 3 2 1 0 - - 2 0 0 0 0 1 - - 0 0.9 1.35 -

inputs are highly similar to each other (some of them are even duplicated). Specifically,
CRADLE, an early work in this area, merely employs existing model architectures as test
inputs without implementing any structural modifications. AUDEE and LEMON move one
step further, introducing self-defined mutation rules to generate mutated test inputs based
on existing model structures. However, these adaptations remain constrained. Some rules
only introduce Gaussian noise into the model weight without any structural modifications.
Other rules selectively modify specific layers while leaving the majority of the model
unchanged. In summary, all three of these methodologies heavily depend on the structure of
the initial seed models, leading to a limited diversity in the generated test inputs. However,
as illustrated in Table 2, the number of bugs detected is highly correlated to the diversity of
the test inputs. This suggests a potential limitation of existing approaches.
• Finding 1.3. There is room for improvement in the seed selection and test input

generation of existing DL library fuzzing. Seed selection and test input generation
constitute critical procedures in related DL library fuzzing techniques. The test effectiveness
of existing approaches is limited because of their inherent flaws in these two stages. By
incorporating domain selection on existing seed models and explicitly adding diversity
when generating new models, both stages can be improved, leading to the final performance
enhancement.

3.3 Empirical Results for Answering RQ2

After the manual analysis of the bugs detected in RQ1, we group these bugs into four categories:
(1) implementation bugs (IBs), (2) implementation differences (IDs), (3) precision bugs

(Ps), and (4) random errors (REs). Table 3 shows the number of unique bugs detected by existing
approaches in different categories. IBs will be triggered if there exist bugs in the implementation
of DL libraries. IDs are raised when different DL libraries implement certain operators in different
ways, e.g., the padding operator is implemented differently in TensorFlow and Theano. The IDs
consist of initialization differences (INIT), data format differences (DAF), and operator

setting differences (SET). Ps are caused by the floating-point precision in the DL libraries. REs
are raised by the inevitable random error caused by operators such as Dropout. Among the four
categories, IDs and REs are considered as false positives.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:9

Table 3. The Number of Unique Bugs in Different Categories

Approach REs
IDs

Ps IBs Total False Positives
INIT DAF SET

CRADLE 2 13 3 5 3 1 27 23

LEMON 0 0 2 1 10 0 13 3

AUDEE 0 1 0 1 8 0 10 2

MUFFIN 0 4 3 3 13 0 23 10

From the perspective of the differential testing for DL libraries, we obtain the following inter-
esting finding:

• Finding 2.1. The existence of implementation differences leads to a large number

of false positives by existing testing approaches. Even MUFFIN, the state-of-the-art dif-
ferential fuzzing approach for DL libraries, suffers from a remarkably high number of false
positives, with a false positive rate of up to 58%. The root cause of these false positives lies
in how the existing approaches adopt differential testing. Differential testing necessitates
consistency in test inputs across various libraries. Unfortunately, existing methodologies
do not provide this assurance. Even though the test input models utilized share identical
logical structures across different libraries, divergent implementations adopted by these li-
braries could lead to inconsistencies at the front end. For example, during the initialization
of a new model, DL libraries will randomly assign parameters. This randomness cannot be
preserved uniformly across all libraries, potentially leading to inconsistencies, which can be
misinterpreted as bugs by existing testing approaches.

To reduce the false positives that suffer from these implementation differences, we can
consider strategies such as initialization transformations, data format transformations, and
setting transformations for specific operators.
• Finding 2.2. The ability of the existing approaches to find IBs is limited. The DL

libraries that could be tested by the existing approaches are restricted by their final test
inputs for target DL libraries. In specific, CRADLE, LEMON, and MUFFIN rely on Keras to
run final test inputs on other back-end libraries, and AUDEE relies on MMdnn to generate
final test inputs. As a result, the DL libraries under testing are of high similarity, i.e., the
development paradigm of static graph. The implementations of these libraries tend to be
same, even if there are bugs in the implementation. To tackle this problem, DL libraries with
different development paradigms should be taken into consideration.

4 APPROACH

In this section, we introduce Gandalf, a novel generation-based differential fuzzing technique for
DL libraries. The generation of test inputs can be considered as two steps. The first step generates
combinations of operators in the graph format, which can serve as the primary test inputs. The
second step generates final test inputs for target DL libraries by transferring the intermediate
graphs into the corresponding library-specific format following the API documentation. These
two steps resemble the inverse process of the typical DL libraries’ computation, where the
front-end first translates the library-specific models into intermediate representations that share
a similar structure (graph), and the back-end hardware will further execute operator graphs. A
good design of a DL library should make these two steps independent of each other [8]. Our
design is inspired by such observation, and our workflow is shown in Figure 2. At a high level, we
first generate operator graphs as primary test inputs based on a grammar-based diversity-guided
strategy (Section 4.1). The context-free grammar (CFG) in our design ensures the generated

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:10 J. Liu et al.

Fig. 2. The workflow of Gandalf.

DL models are valid. The generation process is optimized by a Deep Q-Network (DQN). One
of the optimization goals is diversity (Equation (3)), which aims to find more diverse bugs in the
DL libraries. The second part generates semantically equivalent inputs for different DL libraries
with equivalent Metamorphic Relations (MRs) (Section 4.2) to promote differential testing.
These MRs can reduce false positives. After collecting the generated inputs, we execute them and
cross-check the outputs of DL libraries (Section 4.3). We further analyze the testing results and
use them as rewards for the DQN to improve our testing efficiency.

4.1 Graphs Generation

Based on our empirical study, we observe the problem that it is the selected seeds that limit the
diversity of test inputs produced by existing approaches. Compared with using models with es-
tablished structures as seeds, using seeds with a more flexible low-level structure can effectively
reduce the limits of diversity. Thus, in this article, we employ the smallest units that constitute the
models, i.e., operators, as seeds. By combining operators, we could generate operator graphs for
test inputs. To generate valid operator graphs for test inputs, we propose a generation procedure
based on the CFG of DL models (Section 4.1.1). Further, we employ the DQN as a guide, aiming to
explore the bug-exposing operator graphs (Section 4.1.2).

4.1.1 CFG of DL Models. Considering the legitimate operator graphs are combined following
specific constraints, randomly generated graphs can be potentially invalid and may incur a lot of
false positives. In this article, we employ CFG of DL models to generate valid operator graphs. The
CFG of DL models defines how the DL operators are combined. CFG can ensure the effectiveness of
DL models as test input and is applicable across a wide range of task domains. However, since the
building blocks of DL models are operators rather than simple codes, the CFG of DL models should
be defined in the form of operators. In this article, we define the CFG of a DL model. Following
the practical CFG [4], the CFG of DL models can be defined as Definition 2.

Definition 2 (CFG of DL Models). Given a set of operatorsO = {O0,O1, . . .} and a set of partially

ordered relations (PRs)R = {O0 → O1,O0 → O2, . . .} ofO , the CFG of DL modelsC = (V , Σ,R, S)
defines the valid procedure to combine DL operators as follows:

• select a start symbol s ∈ S , where S is a set of input operators OS ⊂ O ;
• recursively select a non-terminal symbol v ∈ V , where V is a set of non-terminal operators
OV ⊂ O and a partially ordered relation {v0 → v} ∈ R exists between v and the predecessor
v0 of v ;
• select a terminal symbol σ ∈ Σ, where Σ is a set of output operators OΣ ⊂ O ;

• generate α ← s (
⊕

v)
⊗⊕

σ ,

where
⊕

denotes injections of operators and
⊗

denotes repetitions of operators.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:11

Fig. 3. Examples of operator graphs.

Specifically, the CFG defines the way and order in which different types of operators are
combined into DL models, while the PRs constrain the specific sequences that can exist between
each operator. The set of operators (e.g., Conv2D, Batch_norm) is collected from DL libraries
and categorized into three sets (V input, O non-terminal, and Σ output) by their functionality
defined in API documentations. To achieve valid PRs between DL operators, we traverse PRs in
the example projects provided by DL libraries and open-source projects in GitHub and collect PRs
verified by these projects. With the PRs of operators, we can derive valid injections and generate
graphs of operators.

Figure 3 shows the operator graphs of two test inputs, with tensor data I0 and I1 as running
examples for the functionality of CFG. The valid input in Figure 3(a) can be executed by DL libraries
while the invalid input in Figure 3(b) with wrong graphs of operators can be rejected by DL libraries
with compiling errors reported. Since an output operator, i.e., Dense, must be used as the final
operator of the test inputs. If the generation procedure follows the CFG of DL models, then the
invalid combination in Figure 3(b) could be avoided. Because there is neither a PRDense → Conv2d
nor Conv2d belongs to the set of output operators.

4.1.2 Bug-exposing Guidance. In this paper, we select a DQN as the bug-exposing guidance
of Gandalf. According to Definition 2, for each selected operator in the generation procedure,
bunches of operators as its successor satisfying PRs can be selected. For example, there are a
lot of PRs for Conv2d to be selected, including Conv2d → Dropout , Conv2d → ReLU , and
Conv2d → AveraдePoolinд2D. Since a lot of valid PRs can be chosen for each operator in the gen-
eration process, as is shown in Figure 5(a), there can be an exponential number of possible graphs
in the search space. However, different operator graphs may have different bug detection capabili-
ties. It remains a challenge how to generate bug-exposing graphs. In other words, we should select
PRs that can help generate operator graphs toward the direction of amplifying the probability of
exposing bugs. To tackle this challenge, Gandalf adopts reinforcement learning (RL) to assist
the selection of PRs. With the RL technique, Gandalf could learn for exposing bugs based on se-
lected and generated operator combinations, so the bug-exposing graphs in the huge search space
can be found. The exponential amounts of valid PRs may lead to the redundancy of RL techniques.
We prefer DQN to other RL techniques. In this article, we propose a DQN-guided generation ap-
proach to guide the selection of bug-exposing PRs, aiming at generating bug-exposing operator
graphs.

We now briefly introduce the problem setting in reinforcement learning language, where state,
action, and reward play an important role. As is shown in Figure 5(b), for each generation of a
combination, the DQN guides the selection of each PR recursively. For each selection, the DQN
takes the current operator as a state and the required PR as an action from current operator state

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:12 J. Liu et al.

Fig. 4. The architecture of DQN in Gandalf.

Fig. 5. Generating graphs of DL operators.

to a new operator state. After each selection, the environment of DQN gives a reward (calculated
by Equation (3)) for the latest selection, together with the new operator state as an observation.
According to each observation, the DQN of Gandalf decides which action would be conducted next,
i.e., which PR would be selected and added to the generated DL model. In this article, the DQN of
Gandalf employs a Q-Network to decide the next action based on the observation. The Q-Network
takes the observation as an input argument. Gandalf employs a multi-layer perceptron (MLP)

structure with several densely connected layers as the Q-Network in DQN. The architecture of
the Q-Network in Gandalf’s DQN is shown in Figure 4, including two hidden layers with ReLU
activation functions and an output layer. After the output layer, Gandalf uses a Q-value decoder
layer to translate the output feature vector into a Q-value corresponding to each possible action.
The Q-value indicates the estimated reward for each action to be selected. The action with the
biggest value of reward indicates the highest possibility to trigger DL library bugs and would be
selected by Gandalf.

To guide the generation with a high probability of triggering bugs, the DQN saves the recent
selection and reward in a replay memory (RPM) and updates itself automatically. With DQN
guiding the generation of models towards the direction of amplifying reward, Gandalf could gen-
erate bug-exposing test inputs. The higher reward is expected to obtain a higher probability of
exposing bugs.

To further make the DQN guidance suitable for testing DL libraries, we employ two tricks in
our approach, i.e., the top-k selection trick (Trick 1) and the no trap trick (Trick 2).Trick 1 selects
PRs from the k PRs with the highest rewards at a certain probability. Without Trick 1, the guid-
ance tends to always choose the PR with the highest known rewards, which may result in local

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:13

ALGORITHM 1: DQN-Guided Generation Using CFG

Input: O : Operators ; L : DL Library; n : Tarдet number
Output: C : Generated дraphs

1: while Size (C) < n do

2: C ← C ∪ RunEpisode ()
3: end while

4: return C
5: function RunEpisode
6: c,obs, s ← reset (O .inOp), s ← random()
7: while Size (c) < s do

8: action ← DQN .selectAction(obs)
9: c .append (O .[indexO f (action.next))

10: reward ← Reward (action, c)
11: rpm.update (obs,action, reward)
12: // Trick 2. No trap.
13: if trapDetected () then

14: DQN .update (rpm.update (γ))
15: end if

16: obs ← DQN .nextObs ()
17: end while

18: return c .append (o.ouOp)
19: end function

20: function selectAction(obs)
21: dice ← random.uni f orm(0, 1)
22: if dice < ϵ then

23: action ← random(obs)
24: else

25: dice ← random.uni f orm(0, 1)
26: if dice < 0.5 then

27: action ← best (obs)
28: else

29: // Trick 1. Top − k selection.
30: actions ← chooseTopKAction(obs,k)
31: action ← RandomActionFrom(actions)
32: end if

33: end if

34: return action
35: end function

optimum. This can partially alleviate the exploration-exploitation dilemma. By using Trick 1, we
fully leverage all PRs with the potential for higher rewards. During the generation, the trap refers
to the repeated generation of specific graphs. If a trap occurs, thenTrick 2 will update the DQN by
adding a large negative reward to the RPM. WithoutTrick 2, the guidance tends to satisfy the local
optimum and repeatedly generates known graphs of high rewards. By usingTrick 2, our approach
can potentially explore bug-exposing graphs in all candidate graphs.

4.1.3 Overall Algorithm. We formally describe our DQN-guided generation using CFG in
Algorithm 1. The inputs include a set of operators O provided by DL libraries L under test and

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:14 J. Liu et al.

the target number n of generated operator graphs. The output is a set of generated graphs C for
test inputs with operators in O . In this algorithm, n valid graphs for the differential fuzzing are
generated (Lines 1 − 3). During the generation of each combination c (Line 2), c and observation
ob are reset with the input operator in O and the number of non-terminal operators is randomly
generated (Line 6). During the selection of each non-terminal operator, the DQN selects a PR
action as the next action according to ob (Line 8). To encourage the balance between exploration,
i.e., generating different graphs, and exploitation, i.e., generating bug-exposing graphs, we
employ Epsilon-Greedy [43] policy to select action (Lines 20 − 34). During the selection, there
is a probability of ϵ to randomly select (Lines 21 − 24), and a probability of 1−ϵ

2 to select most
bug-exposing action (Lines 25 − 27), and 1 − ϵ

2 to select withTrick 1 (Line 28). After the selection,
the new operator in action is appended into c (Line 9). The reward for the selection is calculated
by Equation (3) (Line 10). The replay memory is updated by current information (Line 11). If a
trap is detected in the current c (Line 13), then we add a large negative reward γ into the RPM
and update the DQN (Line 14) according to Trick 2. The DQN observes the current operator
state obs (Line 16) and gets ready for the new iteration of selecting a non-terminal operator until
the c is generated with enough operators (Lines 7 − 17). Line 18 appends the output operator

for c and returns an operator combination. These two tricks in the algorithm are the key to
the testing effectiveness of Gandalf, and we will demonstrate corresponding experiment results
in RQ4.

4.2 Equivalents Generation

Based on the empirical study, we find that to reduce false positives in DL library testing, it is
necessary to ensure that when adopting differential testing in DL library testing, the test inputs
executed by each library must be identical, including the structure and implementation of the mod-
els. To achieve this goal, we propose equivalents generation to transform the generated operator
graphs into test inputs for different DL libraries, such that the generated test inputs for different
DL libraries are identical. With our method, differential testing can be adopted to cross-check the
consistency of the corresponding outputs of different DL libraries.

To achieve this goal, we design a series of equivalent MRs for generating equivalent test inputs.
In this article, we refer the equivalent test inputs as the instances of DL models under different DL
libraries, sharing the same operator graphs of specific DL operators.

When generating DL models out of graphs, we design a series of equivalent MRs to eliminate
the effect brought about by the IDs of different DL libraries. According to the IDs of different
DL libraries, we need to design different types of equivalent MRs separately. To identify the
equivalent MRs, we adopt the symmetry MR pattern (MRP), which refers to the differences
between different DL libraries to implement DL models. The symmetry relations of DL libraries
lie in the different implementations of the same operators. Following the symmetry MRP, we
identify the equivalent MRs by investigating the implementation differences in each of the
three phases correspondingly, i.e., initialization transformation, data format transformation, and
settings transformation. We introduce them in detail in Table 4. In the table, I1 and I2 denote the
test inputs for two DL libraries LA and LB , respectively, sharing the same operator combination.
LA (I1) and LB (I2) denote the test outputs of I1 and I2.

Before the computations, the implementation differences of DL libraries arise in the random
initializations, including the initialization of weights, kernel, and bias. MR1 − MR3 focus on the
initialization transformation. For the operators in DL libraries, the randomness is mainly intro-
duced by the random initializer within operators. To eliminate such randomness across different
DL libraries, MR1 loads the same weights for the inputs under different libraries. For the random
initializer in kernel and bias , MR2 and MR3 load the same weights to initializer as the constant.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:15

Table 4. Equivalent MRs for DL Libraries

ID Equivalent Metamorphic Relation

1 I1 ≡ I2 when initialized with same weights⇒ LA (I1) ≡ LB (I2)
Initialization

Transformation
2 I1 ≡ I2 when the kernel are normalized with same constants⇒ LA (I1) ≡ LB (I2)
3 I1 ≡ I2 when the bias are normalized with same constants⇒ LA (I1) ≡ LB (I2)

4 I1 ≡ I2 with input shape as (N , H, W , C) and (N , C, H, W) ⇒ LA (I1) ≡ LB (I2)
Data Format

Transformation

5 I1 ≡ I2 with input shape as (N , C, L), (N , L, C) and (L, N , C) ⇒ LA (I1) ≡ LB (I2)
6 I1 ≡ I2 with input shape as channel_f ir st and channel_last ⇒ LA (I1) ≡ LB (I2)
7 I1 ≡ I2 with f loat and f loat32⇒ LA (I1) ≡ LB (I2)
8 I1 ≡ I2 with int and int32⇒ LA (I1) ≡ LB (I2)

9 I1 ≡ I2 when received multi inputs or automated patched inputs⇒ LA (I1) ≡ LB (I2)

Settings

Transformation

10 I1 ≡ I2 when separable and depthwise set as depth_multiplier = 1 or default⇒ LA (I1) ≡ LB (I2)
11 I1 ≡ I2 when paddinд =′ SAME′ or dealing with same padded tensor⇒ LA (I1) ≡ LB (I2)
12 I1 ≡ I2 when received box param or box transformed from list param⇒ LA (I1) ≡ LB (I2)
13 I1 ≡ I2 when I1 .momentum + I2 .momentum = 1⇒ LA (I1) ≡ LB (I2)
14 I1 ≡ I2 with af f ine = T rue or default af f ine ⇒ LA (I1) ≡ LB (I2)
15 I1 ≡ I2 with tr ack_runninд_stats = T rue or default tr ack_runninд_stats ⇒ LA (I1) ≡ LB (I2)

During the computations, the implementation differences of DL libraries are attributed to the
storage order and format of the data. MR4 −MR8 focus on the data format transformation. For the
operators without parameters for input shape, inputs with the shape of (N ,H ,W ,C) are equiva-
lent to that of (N ,C,H ,W) (MR4). MR5 takes the inputs with the shape of (N ,C,L), (N ,L,C), or
(L,N ,C) as equivalents. For the operators with parameters for channel dimension C in the input
shape, the inputs declared as channel_f irst are equivalent to that of channel_last (MR6). For the
undeclared data bits in the operators, MR7 and MR8 treat them equivalent as 32 bits.

After the computations, the implementation differences of DL libraries lie in the default pa-
rameters of the operators. MR9 −MR15 focus on the setting transformation. MR9 treats the multi
inputs and automated patched inputs equivalent. For the operators of depthwise and separable ,
MR10 calculates the equivalent depth_multiplier for default. For the operators regarding paddinд,
MR11 treats the inputs padded within the operator and before the operator equivalent. The
inputs regulated with box list are equivalent to those with separated box (MR12). The inputs
with complementary momentum are equivalent (MR13). For the input with default af f ine and
track_runninд_stats , MR14 and MR15 treat it equivalent to that of True .

4.3 Bugs Detection

In this part, we execute the generated inputs with DL libraries under test and detect bugs in DL
libraries. We detect three kinds of bugs in DL libraries with different symptoms, i.e., CRASH ,
NaN /IN F , and inconsistency. CRASH and NaN /IN F could be detected by checking outputs
directly, while inconsistency could be detected with differential testing. The failures or abortions
of DL libraries lead to CRASH . NaN /IN F consists the existence of NaN and IN F in the test
outputs. DL libraries produce NaN when an undefined or unpresentable value is calculated. When
an infinite value is calculated, DL libraries produce IN F . With differential testing, DL libraries
produce inconsistency bugs when they yield inconsistent outputs for the same test inputs.

Following the three symptoms of bugs, we define a quantitative metric MetricD to measure the
differences between DL libraries, as is shown in Equation (3). β , γ , and δ are considered as the
exploration probability of the three bug symptoms. All bug symptoms are important in DL library
testing. Therefore, it is important to take the detection of multiple bug symptoms into account
when testing DL libraries. To this end, when designing the guidance and the rewards of Gandalf,
we take all bug symptoms into account by setting exploration probability parameters. The values
of β , γ , and δ could be revised according to the testing purpose. For example, if the CRASH bug
symptoms are more preferred, then γ would achieve a higher value compared with β and δ . In this

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:16 J. Liu et al.

article, we value all bug symptoms equally, so we choose to take balanced values of β , γ , and δ .
For the Inconsistency, MetricD is calculated by the distance between the outputs. I and Ic denote
the differences in outputs and the confidence coefficient of outputs. For theCrash and NaN /IN F ,
MetricD is calculated by the mean valuemd of the tensor data, such as that of MNIST. The results
of differential testing could be calculated with MetricD by comparing the outputs of different DL
libraries. Further, MetricD is considered as a reward for each generated test input to DQN.

MetricD =

⎧⎪⎪⎨
⎪⎪
⎩

β ∗ I ∗ Ic Inconsistency
γ ∗md Crash
δ ∗md NaN /IN F

(3)

5 EVALUATION

5.1 Research Questions

Previous sections reveal the limitations of previous work through answering RQ1–RQ2. Section 4
introduces Gandalf to overcome these limitations. In this section, we conduct a comprehensive
study to evaluate Gandalf. We perform our evaluation along with the following three research
questions.

RQ3 (effectiveness): How does Gandalf perform in detecting bugs of DL libraries? Does

Gandalf reduce the effect of mutation seeds from different task domains? To overcome
the limitations of the mutation-based approaches, Gandalf is designed as a generation-based ap-
proach without mutation. By getting rid of the burden of collecting mutation seeds in different
domains, Gandalf can easily test DL libraries across different domains. In this RQ, we want to
validate whether our design goal is met. We select eight widely used datasets for evaluation, as
the same with RQ1 for a fair comparison. All of the operators studied in RQ1 and RQ2 are taken
into consideration. The effectiveness of Gandalf is measured by the number of effective test inputs
generated, i.e., the test inputs that trigger bugs in DL libraries.

RQ4 (diversity and efficiency): Can Gandalf generate diverse test inputs efficiently? As
suggested by Finding 1.2 in RQ1, the generated test inputs of current testing frameworks suffer
from the lack of diversity. In this article, the bug-exposing guidance of Gandalf is designed to
generate diverse test inputs to trigger bugs effectively. In this RQ, we aim to investigate whether
the guidance of Gandalf can indeed provide a significant improvement in the diversity of test
inputs. However, optimizing the test generation process with diversity guidance can increase
testing overhead, which may potentially influence the testing efficiency. As a result, diversity
and efficiency need to be measured together. We measure the diversity of test inputs through
mean Edit Distance and investigate the efficiency of Gandalf by counting how many effective test
inputs are generated in the same period. We compare Gandalf with state-of-the-art approaches,
i.e., random guidance in CRADLE [48] and MUFFIN [22], Markov Chain Monte Carlo (MCMC)

guidance in LEMON [58], and Genetic Algorithm (GA) guidance in AUDEE [24] in the same
time period (i.e., one hour). Meanwhile, to evaluate whether the DQN outperforms other RL
techniques in assisting Gandalf, we compare the performance of Gandalf with a simpler RL
technique, Q-Learning, and a more complex RL technique, DDQN, in assisting Gandalf to find
bugs of three different symptoms. We repeat the experiments three times and apply the t-test to
identify whether the improvement in diversity is significant or not.

RQ5 (bug categories): What categories of bugs are found by Gandalf? How does Gandalf

perform in dealing with false positives? RQ5 aims to identify the bugs found by Gandalf to
provide a more comprehensive understanding of the performance of Gandalf. We categorize the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:17

Table 5. The Number of Effective Test Inputs Generated by Gandalf

TensorFlow PyTorch Jittor

IC N/I C T IC N/I C T IC N/I C T

MNIST 66 15 16 97 4 15 10 29 27 15 1 43
Fashion
-MNIST

90 6 13 109 53 6 63 122 81 6 1 88

CIFAR-10 115 18 6 139 47 18 16 81 72 18 1 91
CIFAR-100 108 45 3 156 3 45 25 73 45 45 1 91
ImageNet 14 16 3 33 14 16 27 57 23 16 1 40

Imdb 23 4 1 28 3 4 3 10 9 4 1 14
Reuters 75 19 0 94 7 19 1 27 45 19 1 65

Common
Voice3

126 198 0 324 6 198 12 216 45 198 1 244

bugs, which are confirmed by manual analysis after contacting developers and provide in-depth
analysis of these bugs with different types. We also discuss the false positives (FPs) found by
Gandalf and analyze to what extent Gandalf reduces the FPs.

5.2 Setup

To answer the above research questions, we select three libraries with different development
paradigms as test subjects: (1) TensorFlow is known for static graphs [2], (2) PyTorch adopts
dynamic graphs [47], (3) Jittor uses meta-operators to enable the fusion of static and dynamic
graphs [27]. Nine versions of the three libraries are taken into consideration, i.e., 2.0.0, 2.4.0, 2.7.0
of TensorFlow, 1.8.1, 1.9.1, 1.10.1 of PyTorch, and 1.1, 1.2, 1.3 of Jittor. These three libraries cover all
the popular technologies currently used in DL software development. Meanwhile, these libraries
have been updated frequently in the past three years and have active developer communities. For
the operators involved in testing, we collect open source projects as example projects from the
trustworthy community (with at least 30 stars) to explore operators that have been frequently
used in the development. According to how many times the different operators are used in the
example projects, we rank the frequency of the DL operators, as shown on our website. Following
the frequency, we select the operators, which are used more than 20 times in the example projects,
with a frequency greater than 0.13%. The remaining operators are the ones that were almost
developed a long time ago and are barely used at present. To comprehensively evaluate Gandalf,
we further compare it with the state-of-the-art approaches in RQ1 and RQ2. For the comparative
study, we evaluate all the approaches on the same experimental subjects to detect bugs in DL
libraries with the same setup for fairness. To further evaluate the usefulness of Gandalf, we
report the new bugs detected by Gandalf to the DL library developers for confirmation and
feedback.

All experiments are conducted on a GNU/Linux system with Linux kernel 4.15.0 on one 20-core
2.5.0 GHz Intel Xeon Gold 6248 CPU with 64 GB RAM equipped with an NVIDIA Corporation
GV100GL GPUs. The CUDA version is 10.0, Anaconda version is 4.10.3, and Python version
is 3.6.

5.3 RQ3: Effectiveness

Table 5 summarizes the number of effective test inputs generated by Gandalf for the three DL
libraries. The effective test inputs refer to the inputs that could trigger bugs. The total number of
effective test inputs generated by Gandalf is listed in column “T.” These effective test inputs can

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:18 J. Liu et al.

Table 6. The Number of Unique Bugs in TensorFlow (TF), PyTorch (PTH), and Jittor (J)

Existing Fixed New

CV NLP ASR CV NLP ASR
Reported Confirmed

CV NLP ASR CV NLP ASR

TF 1 0 0 1 0 0 14 6 6 8 3 2

PTH 0 0 0 0 0 0 3 3 3 2 1 2

J 0 0 0 0 0 0 8 5 5 1 1 1

Fig. 6. Effectiveness of two tricks in Gandalf.

trigger bugs with three different symptoms, including inconsistency bugs (IC), NaN/INF bugs

(N/I), and Crash bugs (C), corresponding to column “IC,” column “N/I,” and column “C.” The
result shows that for different datasets in different domains, Gandalf is able to generate effective
test inputs. More specifically, we exclude the duplicated test inputs that share the same graphs of
operators and parameters. Different from Finding 1.1 in RQ1, regardless of the domains, Gandalf

can generate effective test inputs to test DL libraries.
To further evaluate the effectiveness of Gandalf, we check the number of unique bugs found by

Gandalf for different domains. We categorize the triggered bugs in Table 5 and present the results
in Table 6. In total, Gandalf found 50 unique bugs, with one bug previously fixed in the existing
issues and 49 new bugs. These bugs cover three task domains, and we report all of the new bugs to
DL library developers. Twenty-one of them have been confirmed by the developers and two have
been fixed.

According to our evaluation, Gandalf is effective in testing DL libraries. According to our pre-
liminary experiments, the effectiveness of Gandalf mainly comes from the two tricks detailed in
Algorithm 1. To validate our observations, we conduct the evaluation of our approach on different
policies, i.e., Gandalf in Algorithm 1, Gandalf without top-k selection trick (Trick 1), Gandalf with
no trap trick (Trick 2) to demonstrate the effectiveness of the two tricks. Figure 6(a) demonstrates
that the two tricks contribute to Gandalf in detecting bugs with all symptoms. They enable Gandalf

to detect more NaN /IN F and Crash bugs, as well as inconsistency (IC) bugs. In contrast, without
them, it is difficult to detect bugs with Crash or NaN /IN F , as is shown in Figures 6(b) and 6(c).
This proves that these two tricks are the keys to the effectiveness of Gandalf.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:19

Table 7. The Diversity of Generated Test Inputs and Efficiency of Each Approach

Gandalf Gandalfr GandalfMCMC GandalfGA

mED EIs mED EIs mED EIs mED EIs

CV 3.41 12 4.72 9 1.49 7 2.69 13

NLP 2.88 12 3.17 5 1.40 10 2.60 19

ASR 3.38 113 4.62 49 3.23 11 2.97 99

5.4 RQ4: Diversity and Efficiency

Table 7 depicts the diversity of effective test inputs generated by Gandalf, Gandalfr (variant of
Gandalf with random guidance adopted by CRADLE and MUFFIN), GandalfMCMC (variant of
Gandalf with MCMC guidance adopted by LEMON), and GandalfGA (variant of Gandalf with
GA guidance adopted by AUDEE), calculated by mean edit distance (mED). Among all of the
approaches, Gandalf achieves a higher diversity, compared with the diversity of GandalfMCMC

and GandalfGA. The diversity of Gandalf increased by 80% and 17% compared to GandalfMCMC

and GandalfGA, respectively, based on the average results of the three domains. At the same time,
Gandalf generates a large number of effective inputs (EIs). According to the data in Table 7,
a total of 137 bugs are found with the EIs generated by Gandalf, which is far more than that
of Gandalfr (63 bugs) and GandalfMCMC (28 bugs). It is demonstrated that the RL technique is
superior to other simpler techniques such as MCMC in generating bug-exposing DL models.
Meanwhile, the number of bugs found by the GandalfGA (131 bugs) is also lower than that found
by Gandalf. Thus, the RL-based guidance of Gandalf is more effective than the heuristics adopted
by existing approaches in the given time limit and achieves high efficiency. Based on the overall
results on the three domains, Gandalf improves efficiency by up to five times and two times
compared with GandalfMCMC and Gandalfr , respectively. Although Gandalfr performs well in
terms of diversity, it is the least efficient. Thus, compared to Gandalfr and GandalfMCMC , Gandalf

could achieve high efficiency while ensuring diversity of generated test cases.
Overall, according to Table 7, Gandalf performs well in diversity compared with GandalfGA,

while they share similar efficiency. We further conduct t-test between Gandalf and GandalfGA

to identify whether Gandalf can significantly enhance the diversity of test inputs. In terms
of diversity, the two-tailed P value of t-test results equals 0.0692, paired by domains. In other
words, the enhancement of Gandalf on diversity could be considered significant compared
with GandalfGA. Therefore, among the four approaches, Gandalf is most suitable for testing DL
libraries, since it could provide a significant enhancement in diversity while ensuring efficiency.

Figure 7 illustrates the bug number of three different symptoms, i.e., outputs with CRASH ,
NaN /IN F , and inconsistency, exposed in the same time period when using the three guidances.
With Q-Learning as the guidance, Gandalf, the approach proposed in this article, shows poor
performance in finding bugs in any of the symptoms. When Q-Learning is changed to DQN,
Gandalf shows superior performance in detecting bugs for all symptoms. However, when taking
DDQN as the guidance, although the number of detected bugs is close to that of DQN, additional
resources are consumed due to multiple Q-Networks. Overall, Gandalf chooses DQN as the
guidance to achieve a better performance and reduce the waste of resources compared with other
RL techniques.

5.5 RQ5: Bug Categories

In addition to the number of bugs detected by Gandalf, we categorize them to investigate whether
the proposed approach can find diverse bug types. We conduct a manual analysis of the bugs and
summarize them into the following five typical categories:

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:20 J. Liu et al.

Fig. 7. The bug distribution guided by different RL techniques.

Precision (P) problems regarding floating-point numbers. (56.2%) Floating-point-related
computations are crucial in many building blocks of DL models. Since a typical DNN model
involves countless such computations, slight precision errors can accumulate and eventually lead
to serious errors in the final output. For example in Figure 8(a), in a real reported bug, precision
errors are accumulated in the computations of LayerNorm2d , leading to an inconsistency bug
and localized in Conv2d .

Wrong Reference (WR) regarding underlying APIs. (3.1%) In the implementation of DL
libraries, operators may contain references to underlying APIs. These underlying APIs may be
upgraded or discarded, but the references in these DL operators are not always updated in time,
causing bugs in DL libraries. For example in Figure 8(b), we find that a bug is raised when the oper-
ator reduce_prod invokes an underlying API setdi f f 1d . However, setdi f f 1d is already discarded
and this case triggers a Crash bug of TensorFlow 2.7.0.

Partial-support for Input Space (PIS). (6.2%) Some operators in the DL libraries only sup-
port partial input space for certain data formats and do not provide constraints or exceptions for
illegal data. These problems are typically detected in operations such as obtaining the inverse of a
number, leading to NaN /IN F problems. For example in Figure 9(a), with the operator ReduceMax
repeatedly employed, the operator Rsqrt comes across tensors 1

x
with unsupported shape and a

NaN bug occurs.
Design or Mechanism Bug (D/MB). (9.4%) Some operators in the DL libraries may inher-

ently have imperfect designs or mechanisms, which can lead to bugs. For example in Figure 9(b),
during the evaluation, we find the design of the operator Conv2dtranspose is buggy. When
employing Conv2dtranspose with paddinд = SAME, TensorFlow may automatically set the
pad = kernel_size/2 and out_paddinд = stride − 1, leading to conflicts with paddinд = SAME
and resulting in an inconsistency bug.

Wrong or Ambiguous Documentation (W/AD). (21.9%) As part of the DL libraries, the
API documentation defines how operators are accessed by DL developers. However, there are
inconsistencies between the documentation and the implementation of some operators, or the
documentation does not specify the default constraints in the code, which has led to many
issues. During our evaluation, for all the operators regarding depthwise , it is claimed in API
documentation that all dimensions for stride are supported, which is actually not in the case
(shown in Figure 10) with stride = [2, 3].

During the evaluation, we also identify the false positives found by Gandalf, which are caused
by the inevitable random errors in DL libraries; specifically, the IC bugs raised in operator Dropout,
which randomly sets input units to 0 with a certain frequency to prevent overfitting. We further

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:21

Fig. 8. Typical bug categories (P and WR).

Fig. 9. Typical bug categories (PIS and D/MB).

Table 8. FP Rate of Different Approaches

Approach Gandalf CRADLE AUDEE LEMON MUFFIN

FP Rate (%) 3.1 36.2 23 10 58.8

compare the rate of generating false positives (FP Rate) on Gandalf and the existing approaches.
According to Table 8, Gandalf significantly reduces the false positives.

6 THREATS TO VALIDITY

In this article, the internal threats to validity come from the implementations of Gandalf. When
Gandalf generates DL models, both valid model graphs and corresponding model implementa-
tions under different DL libraries have to be generated, which increases the challenge of model

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:22 J. Liu et al.

Fig. 10. A detected bug of W/AD.

generation and threatens the validity of this article. To reduce the threat, we decouple the com-
bination generation and equivalent generation with each other. When Gandalf is extended with
new operators or equivalent MRs, the generation of another one will not be affected. In addition,
the implementation of Gandalf itself may also produce an internal validity threat. To reduce the
threat, all artifacts regarding our approach, including codes, are carefully verified for weeks by
five professional engineers. Among the five engineers, three of them work for coding review and
two of them work for algorithm checking.

The external threats to validity come from the DL libraries employed in this article. The selec-
tion of DL libraries under test determines whether the findings of our empirical study and the
evaluation of Gandalf can be generalized to other extensive circumstances. To further alleviate
this threat, nine versions of TensorFlow, PyTorch, and Jittor are tested in this article, covering the
popular libraries among DL communities.

The construct threats to validity come from the randomness of our evaluation. In DL libraries,
there are a significant number of operators that employ randomness. These operators contribute
to the performance of DL software, while introducing threats to testing DL libraries due to ran-
domness. As a result, construct threats regarding randomness are inevitably brought about in our
experiments. To reduce such a threat, we set the same time limit (i.e., one hour for each approach
on each dataset), repeat each experiment three times, and take the average results. By repeating
the experiments, the consequences caused by random error, noise, or other external factors can
be minimized. The existing approaches repeat their experiments three times due to the threat of
randomness. Therefore, this article repeats the experiments three times as well.

7 RELATED WORK

Fuzzing Technique. As one of the most widely deployed techniques for software testing [38],
fuzzing produces a series of test inputs and checks whether the software under test violates
a correctness policy [42]. According to how the test inputs are produced, the approaches for
fuzzing are categorized into generation-based fuzzing and mutation-based fuzzing [53]. Previous
generation-based work [31, 39] generates test inputs with specifications or knowledge, such as a
grammar precisely characterizing the input format [15, 21]. Olsthoorn et al. combine the strength
of grammar-based fuzzing and search-based generation to test the JSON parser libraries [45].
Gopinath et al. propose a general algorithm to derive the context-free approximation of input
grammar from dynamic control flow [20]. In this article, we apply generation-based fuzzing to test
DL libraries using well-exploited context-free grammar. This grammar guides how the operators
are combined and forms the backbone of the testing inputs for the DL libraries.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:23

Reinforcement learning in fuzzing. Bottinger et al. propose the first mathematical model to
formalize fuzzing as an RL problem [6]. By defining states, actions, and rewards in the fuzzing
context, they reduce the input fuzzing as a Markov decision process and generate new program in-
puts with high rewards as test inputs. Wang et al. propose a dynamic fuzzing approach, SyzVegas,
which employs an RL scheme, i.e., Multi-Armed Bandit (MAB) problem, to identify the “most
promising” strategy and seed, such as mutation count [56]. By abstracting the task/seed selection
problem as an Adversarial MAB problem, SyzVegas could determine which type of task is the best,
at each stage of fuzzing, and adapt its strategy accordingly. Su et al. propose a novel vulnerability-
guided fuzzing approach, namely, RLF, for generating vulnerable test inputs to detect sophisticated
vulnerabilities in smart contracts [51]. To handle the dynamic states of smart contracts during the
fuzzing, RLF employs an RL framework and models the process of fuzzing smart contracts as a
Markov decision process. Li et al. propose ALPHAPROG, a knowledge-guided RL-based approach
to generating valid programs for compiler fuzzing [35]. Based on Q-learning, ALPHAPROG could
generate a new program with best practices and provide a scalar reward for evaluating this synthe-
sized program. Different from the existing work, since the complexity of testing DL libraries may
lead to the exponential size of the input space, Gandalf employs DQN to guide the generation of
the test inputs, i.e., DL models. To generate error-prone models, we define new metrics for reward
and corresponding tricks for the DQN of Gandalf.
Differential Testing. Differential testing is an effective and acknowledged approach to deal with
the test-oracle problem for complex software [40], such as compilers [52]. With more than one
software implementation sharing the same functionality, differential testing compares the outputs
from different implementations corresponding to the same input and considers the implementation
that produces different output with other as a buggy one [9]. In differential testing, the same inputs
that are expected as the outputs should be consistent theoretically [23]. When a large number
of test inputs are employed, differential testing is promising in detecting semantic or logic bugs
without manual efforts on labeling outputs [61]. In this article, we apply differential testing to a
complex software suffering from the test-oracle problem, i.e., DL libraries. Since it is infeasible to
generate identical inputs for different DL libraries because of their diverse software structures, we
design MRs to generate semantically equivalent inputs so their outputs can be consistent.
Test input diversity. Input diversity has been investigated to support different aspects related to
traditional software testing. Since executing similar test inputs tends to exercise similar parts of
the software under test, it is likely to result in revealing duplicate bugs during testing. Therefore,
testing with diverse test inputs should increase the exploration of the input space and thus increase
bug detection rates [7, 13, 26]. Feldt et al. proposed TDSm, a diversity-based testing strategy [19].
TDSm employs the NCD metric to measure the diversity of test inputs. They demonstrate that
diverse test inputs increase testing effectiveness and exhibit better bug detection capabilities.
Hemmati et al. conducted an empirical study on similarity-based testing techniques for test inputs
generated from state machine models [25]. They studied and compared over 320 variants that
relied on different diversity metrics. Based on their experiments, they find that similarity-based
testing techniques outperformed other techniques in bug detection rates and computational cost.
Biagiola et al. introduced a web test generation algorithm that produces and selects candidate
test inputs that are executed in the browser based on their diversity [5]. They verify that their
diversity-based testing technique achieved higher code coverage and fault detection rates when
compared to state-of-the-art, search-based web test generators [41]. In this article, we conduct an
empirical study on the testing effectiveness and input diversity of the existing testing approaches
for DL libraries. According to the empirical results, we find that the testing approach with high
diversity could detect more bugs in DL libraries and achieve positive performance.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

50:24 J. Liu et al.

Deep Learning Library. DL libraries are the infrastructures for DL-based software in multiple
domains, providing a number of operators as APIs [62]. Early DL libraries such as Theano
encapsulate operators for multidimensional arrays [3], which can only be used for simple
DL tasks. With DL libraries such as Caffe, DL-based software has been promoted in the CV
domain [30]. Along the line, more mature DL libraries such as TensorFlow, PyTorch, and Jittor
have been released [2, 27, 47]. One significant improvement of them is that they enable DL-based
software in different domains such as NLP [46] and ASR [36]. As DL libraries develop, testing
approaches for DL libraries should also evolve. As part of DL Library, DL APIs, DL operators
are considered prone to bugs. References [61, 62] report precision bugs of multiple DL operators.
Wei et al. [28, 57, 59] propose equivalence rules or mutations to test DL APIs. However, DL
libraries are not simply collections of operators or APIs. Instead, DL libraries are used to handle
large-scale computations based on operator combinations. Four representative differential fuzzing
approaches have been proposed to tackle the problem. CRADLE [48] takes the well-established
models as the test inputs. AUDEE [24] mutates the well-established models to generate the test
inputs via mutation rules without changing the structures. LEMON [58] mutates the structures of
the well-established models to generate the test inputs. MUFFIN [22] generates test inputs based
on predefined DL model structure templates. According to our empirical results in Section 3,
existing testing approaches are ineffective in testing DL libraries across multiple domains. Their
generated test inputs lack diversity and report many false positives. In contrast, Gandalf in this
article can find bugs across multiple domains. The diversified test inputs generated by Gandalf

allow the effective testing of DL libraries in a broader range of contexts with few false positives.

8 CONCLUSION

In this article, to understand the limitations of existing approaches, we first conduct an empirical
study to evaluate the performance of four representative testing frameworks, namely, CRADLE,
AUDEE, LEMON, and MUFFIN. We find that the test cases generated by all four approaches cannot
generalize effectively across different task domains. Furthermore, the triggered bugs lack diversity
and can usually arise false positives. To address these issues, we propose Gandalf, the first guided
differential fuzzing approach based on generation for DL libraries. Through comprehensive evalua-
tion, we demonstrate that Gandalf alleviates all aforementioned problems and can test DL libraries
effectively and efficiently. During the evaluation, we also find 49 new unique bugs and report all
of them to the developers of DL libraries. We receive their positive confirmation on these bugs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their insightful comments.

REFERENCES

[1] Reddit. 2021. Using PyTorch + NumPy? A bug that plagues thousands of open-source projects. Retrieved from https:

//www.reddit.com/r/MachineLearning/comments/mocpgj/p_using_pytorch_numpy_a_bug_that_plagues/

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Oper-

ating Systems Design and Implementation, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Association, 265–283.

Retrieved from https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[3] The Theano Development Team. 2016. Theano: A Python Framework for Fast Computation of Mathematical Expressions.

CoRR abs/1605.02688 (2016).

[4] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing program input grammars. In Pro-

ceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for

Computing Machinery, New York, NY, 95–110. https://doi.org/10.1145/3062341.3062349

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

https://www.reddit.com/r/MachineLearning/comments/mocpgj/p_using_pytorch_numpy_a_bug_that_plagues/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/3062341.3062349

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:25

[5] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019. Diversity-based web test generation. In ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,

Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 142–153. DOI:https://doi.org/10.1145/

3338906.3338970

[6] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. 2018. Deep reinforcement fuzzing. In IEEE Security and

Privacy Workshops. IEEE Computer Society, 116–122. DOI:https://doi.org/10.1109/SPW.2018.00026

[7] Emanuela Gadelha Cartaxo, Patrícia D. L. Machado, and Francisco G. Oliveira Neto. 2011. On the use of a similarity

function for test case selection in the context of model-based testing. Softw. Test. Verific. Reliab. 21, 2 (2011), 75–100.

DOI:https://doi.org/10.1002/stvr.413

[8] Junjie Chen, Yihua Liang, Qingchao Shen, and Jiajun Jiang. 2022. Toward understanding deep learning framework

bugs. CoRR abs/2203.04026 (2022).

[9] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2021. A survey of

compiler testing. ACM Comput. Surv. 53, 1 (2021), 4:1–4:36. DOI:https://doi.org/10.1145/3363562

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and

Zheng Zhang. 2015. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems.

CoRR abs/1512.01274 (2015).

[11] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2018. Meta-

morphic testing: A review of challenges and opportunities. ACM Comput. Surv. 51, 1 (2018), 4:1–4:27. DOI:https:

//doi.org/10.1145/3143561

[12] Xuxin Chen, Ximin Wang, Ke Zhang, Kar-Ming Fung, Theresa C. Thai, Kathleen Moore, Robert S. Mannel, Hong

Liu, Bin Zheng, and Yuchen Qiu. 2022. Recent advances and clinical applications of deep learning in medical image

analysis. Med. Image Anal. 79 (2022), 102444. DOI:https://doi.org/10.1016/j.media.2022.102444

[13] Francisco Gomes de Oliveira Neto, Azeem Ahmad, Ola Leifler, Kristian Sandahl, and Eduard Enoiu. 2018. Improving

continuous integration with similarity-based test case selection. In 13th International Workshop on Automation of

Software Test, Xiaoying Bai, J. Jenny Li, and Andreas Ulrich (Eds.). ACM, 39–45. DOI:https://doi.org/10.1145/3194733.

3194744

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image

database. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’09). IEEE Computer

Society, 248–255. DOI:https://doi.org/10.1109/CVPR.2009.5206848

[15] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2014. Language fuzzing using constraint logic programming. In

ACM/IEEE International Conference on Automated Software Engineering, Ivica Crnkovic, Marsha Chechik, and Paul

Grünbacher (Eds.). ACM, 725–730. DOI:https://doi.org/10.1145/2642937.2642963

[16] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017. Automated testing of graphics shader

compilers. Proc. ACM Program. Lang. 1, OOPSLA (2017), 93:1–93:29. DOI:https://doi.org/10.1145/3133917

[17] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. DeepStellar: Model-based quantitative

analysis of stateful deep learning systems. In ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra

Russo (Eds.). ACM, 477–487. DOI:https://doi.org/10.1145/3338906.3338954

[18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture search: A survey. J. Mach. Learn.

Res. 20, 1 (2019), 1997–2017.

[19] Robert Feldt, Simon M. Poulding, David Clark, and Shin Yoo. 2016. Test set diameter: Quantifying the diversity of sets

of test cases. In IEEE International Conference on Software Testing, Verification and Validation. IEEE Computer Society,

223–233. DOI:https://doi.org/10.1109/ICST.2016.33

[20] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining input grammars from dynamic control flow. In

28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineer-

ing, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 172–183. DOI:https://doi.org/10.1145/

3368089.3409679

[21] Gustavo Grieco, Martín Ceresa, and Pablo Buiras. 2016. QuickFuzz: an automatic random fuzzer for common file

formats. In Proceedings of the 9th International Symposium on Haskell. Association for Computing Machinery, New

York, NY, 13–20. https://doi.org/10.1145/2976002.2976017

[22] Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. 2022. MUFFIN: Testing deep learning libraries via neu-

ral architecture fuzzing. In 44th IEEE/ACM 44th International Conference on Software Engineering. ACM, 1418–1430.

DOI:https://doi.org/10.1145/3510003.3510092

[23] Muhammad Ali Gulzar, Yongkang Zhu, and Xiaofeng Han. 2019. Perception and practices of differential testing. In

41st International Conference on Software Engineering: Software Engineering in Practice, Helen Sharp and Mike Whalen

(Eds.). IEEE/ACM, 71–80. DOI:https://doi.org/10.1109/ICSE-SEIP.2019.00016

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

https://doi.org/10.1145/3338906.3338970
https://doi.org/10.1109/SPW.2018.00026
https://doi.org/10.1002/stvr.413
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3143561
https://doi.org/10.1016/j.media.2022.102444
https://doi.org/10.1145/3194733.3194744
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/2642937.2642963
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3338906.3338954
https://doi.org/10.1109/ICST.2016.33
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1145/2976002.2976017
https://doi.org/10.1145/3510003.3510092
https://doi.org/10.1109/ICSE-SEIP.2019.00016

50:26 J. Liu et al.

[24] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao Shen. 2020. AUDEE: Automated

testing for deep learning frameworks. In 35th IEEE/ACM International Conference on Automated Software Engineering.

IEEE, 486–498. DOI:https://doi.org/10.1145/3324884.3416571

[25] Hadi Hemmati, Andrea Arcuri, and Lionel C. Briand. 2013. Achieving scalable model-based testing through test case

diversity. ACM Trans. Softw. Eng. Methodol. 22, 1 (2013), 6:1–6:42. DOI:https://doi.org/10.1145/2430536.2430540

[26] Hadi Hemmati, Zhihan Fang, and Mika V. Mäntylä. 2015. Prioritizing manual test cases in traditional and rapid release

environments. In 8th IEEE International Conference on Software Testing, Verification and Validation. IEEE Computer

Society, 1–10. DOI:https://doi.org/10.1109/ICST.2015.7102602

[27] Shi-Min Hu, Dun Liang, Guo-Ye Yang, Guo-Wei Yang, and Wen-Yang Zhou. 2020. Jittor: A novel deep learning frame-

work with meta-operators and unified graph execution. Sci. China Inf. Sci. 63, 12 (2020). DOI:https://doi.org/10.1007/

s11432-020-3097-4

[28] Li Jia, Hao Zhong, and Linpeng Huang. 2021. The unit test quality of deep learning libraries: A mutation analysis.

In IEEE International Conference on Software Maintenance and Evolution. IEEE, 47–57. DOI:https://doi.org/10.1109/

ICSME52107.2021.00011

[29] Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2020. An empirical study on bugs inside

TensorFlow. In 25th International Conference on Database Systems for Advanced Applications (Lecture Notes in Computer

Science, Vol. 12112), Yunmook Nah, Bin Cui, Sang-Won Lee, Jeffrey Xu Yu, Yang-Sae Moon, and Steven Euijong Whang

(Eds.). Springer, 604–620. DOI:https://doi.org/10.1007/978-3-030-59410-7_40

[30] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross B. Girshick, Sergio Guadarrama,

and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In ACM International Confer-

ence on Multimedia, Kien A. Hua, Yong Rui, Ralf Steinmetz, Alan Hanjalic, Apostol Natsev, and Wenwu Zhu (Eds.).

ACM, 675–678. DOI:https://doi.org/10.1145/2647868.2654889

[31] Rauli Kaksonen, Marko Laakso, and Ari Takanen. 2001. Software Security Assessment through Specification Mutations

and Fault Injection. Springer US, 173–183. DOI:https://doi.org/10.1007/978-0-387-35413-2_16

[32] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report.

[33] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via guided stochastic program mutation. In

Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,

and Applications. Association for Computing Machinery, New York, NY, 386–399. https://doi.org/10.1145/2814270.

2814319

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document

recognition. Proc. IEEE 86, 11 (1998), 2278–2324. DOI:https://doi.org/10.1109/5.726791

[35] Xiaoting Li, Xiao Liu, Lingwei Chen, Rupesh Prajapati, and Dinghao Wu. 2022. ALPHAPROG: Reinforcement gen-

eration of valid programs for compiler fuzzing. In 36th AAAI Conference on Artificial Intelligence, 34th Conference on

Innovative Applications of Artificial Intelligence, T12th Symposium on Educational Advances in Artificial Intelligence.

AAAI Press, 12559–12565. DOI:https://doi.org/10.1609/aaai.v36i11.21527

[36] Yuchen Liu, Jiajun Zhang, Hao Xiong, Long Zhou, Zhongjun He, Hua Wu, Haifeng Wang, and Chengqing Zong. 2020.

Synchronous speech recognition and speech-to-text translation with interactive decoding. In 34th AAAI Conference

on Artificial Intelligence, 32nd Innovative Applications of Artificial Intelligence Conference, 10th AAAI Symposium on

Educational Advances in Artificial Intelligence. AAAI Press, 8417–8424. Retrieved from https://ojs.aaai.org/index.php/

AAAI/article/view/6360

[37] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning

word vectors for sentiment analysis. In 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies, Dekang Lin, Yuji Matsumoto, and Rada Mihalcea (Eds.). The Association for Computer Lin-

guistics, 142–150. Retrieved from https://aclanthology.org/P11-1015/

[38] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz, and

Maverick Woo. 2021. The art, science, and engineering of fuzzing: A survey. IEEE Trans. Softw. Eng. 47, 11 (2021),

2312–2331. DOI:https://doi.org/10.1109/TSE.2019.2946563

[39] Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias Höschele, and Andreas Zeller. 2019.

Parser-directed fuzzing. In 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,

Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 548–560. DOI:https://doi.org/10.1145/3314221.3314651

[40] William M. McKeeman. 1998. Differential testing for software. Digit. Tech. J. 10, 1 (1998), 100–107. Retrieved from

http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

[41] Ali Mesbah, Arie van Deursen, and Danny Roest. 2012. Invariant-based automatic testing of modern web applications.

IEEE Trans. Softw. Eng. 38, 1 (2012), 35–53. DOI:https://doi.org/10.1109/TSE.2011.28

[42] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An empirical study of the reliability of UNIX utilities. Commun.

ACM 33, 12 (1990), 32–44. DOI:https://doi.org/10.1145/96267.96279

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

https://doi.org/10.1145/3324884.3416571
https://doi.org/10.1145/2430536.2430540
https://doi.org/10.1109/ICST.2015.7102602
https://doi.org/10.1007/s11432-020-3097-4
https://doi.org/10.1109/ICSME52107.2021.00011
https://doi.org/10.1007/978-3-030-59410-7_40
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1007/978-0-387-35413-2_16
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1109/5.726791
https://doi.org/10.1609/aaai.v36i11.21527
https://ojs.aaai.org/index.php/AAAI/article/view/6360
https://aclanthology.org/P11-1015/
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/3314221.3314651
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1109/TSE.2011.28
https://doi.org/10.1145/96267.96279

Generation-Based Differential Fuzzing for Deep Learning Libraries 50:27

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,

Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis

Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-

level control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533. DOI:https://doi.org/10.1038/

nature14236

[44] Kazuhiro Nakamura and Nagisa Ishiura. 2016. Random testing of C compilers based on test program generation

by equivalence transformation. In IEEE Asia Pacific Conference on Circuits and Systems. IEEE, 676–679. DOI:https:

//doi.org/10.1109/APCCAS.2016.7804063

[45] Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. 2020. Generating highly-structured input data by

combining search-based testing and grammar-based fuzzing. In 35th IEEE/ACM International Conference on Automated

Software Engineering. IEEE, 1224–1228. DOI:https://doi.org/10.1145/3324884.3418930

[46] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. 2021. A survey of the usages of deep learning for natural

language processing. IEEE Trans. Neural Netw. Learn. Syst. 32, 2 (2021), 604–624. DOI:https://doi.org/10.1109/TNNLS.

2020.2979670

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin

Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Py-

Torch: An imperative style, high-performance deep learning library. In Annual Conference on Neural Information Pro-

cessing Systems, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and

Roman Garnett (Eds.). 8024–8035. Retrieved from https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2

bfa9f7012727740-Abstract.html

[48] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE: Cross-backend validation to detect

and localize bugs in deep learning libraries. In 41st International Conference on Software Engineering, Joanne M. Atlee,

Tevfik Bultan, and Jon Whittle (Eds.). IEEE/ACM, 1027–1038. DOI:https://doi.org/10.1109/ICSE.2019.00107

[49] Sergio Segura, Gordon Fraser, Ana Belén Sánchez, and Antonio Ruiz Cortés. 2016. A survey on metamorphic testing.

IEEE Trans. Softw. Eng. 42, 9 (2016), 805–824. DOI:https://doi.org/10.1109/TSE.2016.2532875

[50] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s open-source deep-learning toolkit. In 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Balaji Krishnapuram, Mohak Shah, Alexander J.

Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.). ACM, 2135. DOI:https://doi.org/10.1145/2939672.

2945397

[51] Jianzhong Su, Hong-Ning Dai, Lingjun Zhao, Zibin Zheng, and Xiapu Luo. 2022. Effectively generating vulnerable

transaction sequences in smart contracts with reinforcement learning-guided fuzzing. In 37th IEEE/ACM International

Conference on Automated Software Engineering. ACM, 36:1–36:12. DOI:https://doi.org/10.1145/3551349.3560429

[52] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and analyzing compiler warning defects. In 38th International

Conference on Software Engineering, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM, 203–213.

DOI:https://doi.org/10.1145/2884781.2884879

[53] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force Vulnerability Discovery. Pearson

Education.

[54] Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. 2010. An automatic testing approach for compiler based on

metamorphic testing technique. In 17th Asia Pacific Software Engineering Conference, Jun Han and Tran Dan Thu

(Eds.). IEEE Computer Society, 270–279. DOI:https://doi.org/10.1109/APSEC.2010.39

[55] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated testing of deep-neural-network-

driven autonomous cars. In 40th International Conference on Software Engineering, Michel Chaudron, Ivica Crnkovic,

Marsha Chechik, and Mark Harman (Eds.). ACM, 303–314. DOI:https://doi.org/10.1145/3180155.3180220

[56] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V. Krishnamurthy, and Nael B. Abu-Ghazaleh.

2021. SyzVegas: Beating kernel fuzzing odds with reinforcement learning. In 30th USENIX Security Symposium,

Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 2741–2758. Retrieved from https://www.usenix.

org/conference/usenixsecurity21/presentation/wang-daimeng

[57] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan. 2022. EAGLE: Creating equivalent

graphs to test deep learning libraries. In 44th IEEE/ACM 44th International Conference on Software Engineering. ACM,

798–810. DOI:https://doi.org/10.1145/3510003.3510165

[58] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep learning library testing via effective

model generation. In 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 788–799. DOI:https:

//doi.org/10.1145/3368089.3409761

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

https://doi.org/10.1038/nature14236
https://doi.org/10.1109/APCCAS.2016.7804063
https://doi.org/10.1145/3324884.3418930
https://doi.org/10.1109/TNNLS.2020.2979670
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1109/ICSE.2019.00107
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/3551349.3560429
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1145/3180155.3180220
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://doi.org/10.1145/3510003.3510165
https://doi.org/10.1145/3368089.3409761

50:28 J. Liu et al.

[59] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free lunch for testing: Fuzzing deep-learning

libraries from open source. In 44th IEEE/ACM 44th International Conference on Software Engineering. ACM, 995–1007.

DOI:https://doi.org/10.1145/3510003.3510041

[60] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: A novel image dataset for benchmarking machine

learning algorithms. CoRR abs/1708.07747 (2017).

[61] Xufan Zhang, Jiawei Liu, Ning Sun, Chunrong Fang, Jia Liu, Jiang Wang, Dong Chai, and Zhenyu Chen. 2021. Duo:

Differential fuzzing for deep learning operators. IEEE Trans. Reliab. 70, 4 (2021), 1671–1685. DOI:https://doi.org/10.

1109/TR.2021.3107165

[62] Xufan Zhang, Ning Sun, Chunrong Fang, Jiawei Liu, Jia Liu, Dong Chai, Jiang Wang, and Zhenyu Chen. 2021. Predoo:

Precision testing of deep learning operators. In 30th ACM SIGSOFT International Symposium on Software Testing and

Analysis, Cristian Cadar and Xiangyu Zhang (Eds.). ACM, 400–412. DOI:https://doi.org/10.1145/3460319.3464843

[63] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018. An empirical study on TensorFlow

program bugs. In 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, Frank Tip and Eric

Bodden (Eds.). ACM, 129–140. DOI:https://doi.org/10.1145/3213846.3213866

[64] Zhi Quan Zhou, Liqun Sun, Tsong Yueh Chen, and Dave Towey. 2020. Metamorphic relations for enhancing system

understanding and use. IEEE Trans. Softw. Eng. 46, 10 (2020), 1120–1154. DOI:https://doi.org/10.1109/TSE.2018.2876433

Received 19 December 2022; revised 3 August 2023; accepted 20 September 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 50. Pub. date: December 2023.

https://doi.org/10.1145/3510003.3510041
https://doi.org/10.1109/TR.2021.3107165
https://doi.org/10.1145/3460319.3464843
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1109/TSE.2018.2876433

