
129

ArchRepair: Block-Level Architecture-Oriented Repairing
for Deep Neural Networks

HUA QI, Kyushu University

ZHIJIE WANG, University of Alberta

QING GUO, Centre for Frontier AI Research (CFAR), A*STAR, and Institute of High Performance Comput-

ing (IHPC), A*STAR

JIANLANG CHEN, Kyushu University

FELIX JUEFEI-XU, Meta AI

FUYUAN ZHANG, Kyushu University

LEI MA, University of Alberta and The University of Tokyo

JIANJUN ZHAO, Kyushu University

Over the past few years, deep neural networks (DNNs) have achieved tremendous success and have been con-

tinuously applied in many application domains. However, during the practical deployment in industrial tasks,

DNNs are found to be erroneous-prone due to various reasons such as overfitting and lacking of robustness

to real-world corruptions during practical usage. To address these challenges, many recent attempts have

been made to repair DNNs for version updates under practical operational contexts by updating weights (i.e.,

network parameters) through retraining, fine-tuning, or direct weight fixing at a neural level. Nevertheless,

existing solutions often neglect the effects of neural network architecture and weight relationships across

neurons and layers. In this work, as the first attempt, we initiate to repair DNNs by jointly optimizing the

architecture and weights at a higher (i.e., block level).

We first perform empirical studies to investigate the limitation of whole network-level and layer-level re-

pairing, which motivates us to explore a novel repairing direction for DNN repair at the block level. To this

Hua Qi and Zhijie Wang contributed equally to this research.

Felix Juefei-Xu work was done prior to joining Meta AI.

This work was supported in part by JST-Mirai Program Grant No. JPMJMI20B8, JSPS KAKENHI Grant No. JP20H04168,

No. JP21H04877, JST the establishment of university fellowships toward the creation of science technology innovation,

Grant No. JPMJFS2132, as well as Canada CIFAR AI Chairs Program and the Natural Sciences and Engineering Research

Council of Canada (NSERC No. RGPIN-2021-02549, No. RGPAS-2021-00034, No. DGECR-2021-00019). This work was also

supported by A*STAR Centre for Frontier AI Research.

Authors’ addresses: H. Qi, J. Chen, F. Zhang, and J. Zhao, Kyushu University, Motooka 744, West Ward, Fukuoka, Fukuoka,

819-1102, Japan; emails: qi.hua.677@s.kyushu-u.ac.jp, chen.jianlang.396@s.kyushu-u.ac.jp, zhang.fuyuan.083@m.kyushu-

u.ac.jp, zhao@ait.kyushu-u.ac.jp; Z. Wang, University of Alberta, 9211 116 Street NW, Edmonton, Alberta, T6G 1H9,

Canada; email: zhijie.wang@ualberta.ca; Q. Guo (corresponding author), Center for Frontier AI Research (CFAR), Agency

for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16, Connexis North Tower, Singapore, 138632,

Republic of Singapore and Institute of High Performance Computing (IHPC), Agency for Science, Technology and Re-

search (A*STAR), 1 Fusionopolis Way, #16-16, Connexis North Tower, Singapore, 138632, Republic of Singapore; email:

tsingqguo@ieee.org; F. Juefei-Xu, Meta AI, 380 West 33rd Street, New York, New York, 10001; email: felixu@meta.com;

L. Ma (corresponding author), University of Alberta, 9211 116 Street NW, Edmonton, Alberta, T6G 1H9, Canada and The

University of Tokyo, 7 Chome-3-1 Hongo, Tokyo, Tokyo, 113-8654, Japan; email: ma.lei@acm.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/07-ART129 $15.00

https://doi.org/10.1145/3585005

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

https://orcid.org/0000-0002-4302-1915
https://orcid.org/0000-0003-4559-5426
https://orcid.org/0000-0003-0974-9299
https://orcid.org/0009-0002-5956-3417
https://orcid.org/0000-0002-0857-8611
https://orcid.org/0009-0001-6560-5102
https://orcid.org/0000-0002-8621-2420
https://orcid.org/0000-0001-8083-4352
mailto:permissions@acm.org
https://doi.org/10.1145/3585005
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585005&domain=pdf&date_stamp=2023-07-24

129:2 H. Qi et al.

end, we need to further consider techniques to address two key technical challenges, i.e., block localization,

where we should localize the targeted block that we need to fix; and how to perform joint architecture and

weight repairing. Specifically, we first propose adversarial-aware spectrum analysis for vulnerable block local-

ization that considers the neurons’ status and weights’ gradients in blocks during the forward and backward

processes, which enables more accurate candidate block localization for repairing even under a few exam-

ples. Then, we further propose the architecture-oriented search-based repairing that relaxes the targeted block

to a continuous repairing search space at higher deep feature levels. By jointly optimizing the architecture

and weights in that space, we can identify a much better block architecture. We implement our proposed re-

pairing techniques as a tool, named ArchRepair , and conduct extensive experiments to validate the proposed

method. The results show that our method can not only repair but also enhance accuracy and robustness,

outperforming the state-of-the-art DNN repair techniques.

CCS Concepts: • Software and its engineering→Maintaining software; Search-based software engineer-

ing; • Computing methodologies→ Neural networks;

Additional Key Words and Phrases: Deep learning, DNN repair, neural architecture search

ACM Reference format:

Hua Qi, Zhijie Wang, Qing Guo, Jianlang Chen, Felix Juefei-Xu, Fuyuan Zhang, Lei Ma, and Jianjun Zhao. 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks. ACM Trans. Softw. Eng.

Methodol. 32, 5, Article 129 (July 2023), 31 pages.

https://doi.org/10.1145/3585005

1 INTRODUCTION

Modern high-capacity deep neural networks (DNNs) have achieved astounding performance
in many automated computer vision tasks ranging from complex scene understanding for au-
tonomous driving [6, 9, 37, 40, 51, 66], to accurate DeepFake media detection [12, 30]; from challeng-
ing medical imagery grading and diagnosis [8, 15, 61, 71], to billion-scale consumer applications
such as the face authentication for mobile payment, and so on. Many of the tasks are safety- and
mission-critical and the reliability of the deployed DNNs is of utmost importance. However, over
the years, we have come to realize that the existence of unintentional (natural degradation corrup-
tions) and intentional (adversarial perturbations) examples such as [7, 8, 16–18, 21–23, 28, 38, 61,
62, 67, 73] is a stark reminder that DNNs are vulnerable.

To tackle the DNN’s vulnerability issues, many researchers have resorted to DNN repairing
which aims at fixing the faulty DNN weights with the guidance of some specific repairing op-
timization criteria. An analogy to this is the traditional software repairing in the software engi-
neering literature [20]. However, general-purpose DNN repairing may not always be feasible in
practice, due to (1) the difficulty of generalizing DNNs to any arbitrary unseen scenarios, and
(2) the difficulty of generalizing DNNs to seen scenarios but with the unpredictable, volatile, and
ever-changing deployed environment. For these reasons, a more practical DNN repairing strat-
egy is to work under some assumptions of practical contexts and to perform task-specific and
environment-aware DNN repairing where the model gap is closed up for a certain scenario/envi-
ronment, or a set of scenarios/environments.

Compared to existing DNN repair work (e.g., [19, 45, 54, 59, 72, 74]), this work takes the DNN
repairing to a whole new level, quite literally, where we are performing block-level architecture-
oriented repairing as opposed to network-level, layer-level, and neuron-level repairing. As we will
show in the following sections that block-level repairing, being a midpoint sweet spot in terms
of network module granularity, offers a good tradeoff between network accuracy and time con-
sumption for that just repairing some specific weights in a layer neglects the relationship between

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

https://doi.org/10.1145/3585005

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:3

different layers while repairing the whole network weights leads to high cost. In addition, block-
level repairing allows us to locally adjust not only the weights but also the network architecture
within the block very effectively and efficiently.

To this end, as the first attempt, we repair DNNs by jointly optimizing the architecture and
weights at the block level in this work. The modern block structure stems from the philosophy of
VGG nets [57] and is generalized to a common designing strategy in the state-of-the-art architec-
tures [25] (e.g., ResNet) and optimization method [39]. To validate its importance for block-level
repairing, we first study the drawbacks of network-level and layer-level repairing, which moti-
vates us to explore a novel research granularity and repairing direction. Eventually, we identified
that block-level architecture-oriented DNN repair is a promising direction. In order to achieve
this, we need to address two challenges, i.e., block localization and joint architecture and weight re-

pairing. For the first challenge, we propose the adversarial-aware spectrum analysis for vulnerable

block localization that considers the neuron suspiciousness and weights’ gradients in blocks during
the forward and backward processes when evaluating a series of examples. This method enables
more precise block localization even under few-shot examples. In terms of the second challenge,
we propose the architecture-oriented search-based repairing that relaxes the targeted block to a
continuous search space. The space consists of several nodes and edges where the node represents
deep features and the edge is an operation to connect two nodes. By jointly optimizing the ar-
chitecture and weights in that space, our method is able to find a much better block architecture
for a specific repairing target. We conduct extensive experiments to validate the proposed repair-
ing method and find that our method can not only enhance the accuracy but also the robustness
across various corruptions. The different DNN models repaired with our technique perform better
than the original one on both clean and corrupted data, with an average of 3.939% improvement
on clean data and 7.79% improvement on corrupted data, establishing vigorous general repairing
capability on most of the DNN architectures.

Overall, the key contribution of this article is summarized as follows:

— We propose block-level architecture-oriented repairing for DNN repair. The intuition of
block structure design in modern DNNs provides a suitable granularity of DNN repair at the
block-level [25]. In addition, we also show that jointly optimizing architecture and weights
further brings the advantage of DNN repair over repairing DNN by only updating weights,
which is demonstrated by our comparative evaluation in the experimental section.

— In terms of the novelty and potential impacts, existing DNN repair methods [14, 19, 45, 54, 59,
74] mostly focus on only repairing DNN via updating its weights while ignoring inherent
DNN architecture design (e.g., block structure and relationships between different layers),
which could also impact the DNN behavior, whereas only repairing the weights could not
address such an issue. Therefore, compared with existing work, this article initiates a new
and wide direction for DNN repair by taking relationships of DNN architecture design as
well as layers and weights into consideration.

— Technically, we originally propose the adversarial-aware spectrum analysis-based block lo-
calization and architecture-oriented search-based repairing method, both of which are novel
for DNN repair. The first one enables us to localize a vulnerable block accurately even with
only a few examples. The latter formulates the repairing problem as the joint optimization
of both the architecture and weights at the block level.

— We implement our repairing techniques in the tool ArchRepair and perform extensive eval-
uation against 6 state-of-the-art DNN repair techniques under 4 DNNs with different archi-
tectures on two different datasets. The results demonstrate the advantage of ArchRepair in
achieving SOTA repairing performance in terms of both accuracy and robustness.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:4 H. Qi et al.

To the best of our knowledge, this is the very first attempt to consider the DNN repairing problem
at the block level that repairs both network weights and architecture jointly. The results of this
article demonstrate the limitation of repairing DNN by only updating the weights, and show that
other important DNN development elements such as architecture that encodes more advanced
relationships of neurons and layers should also be taken into consideration during the design of
DNN repair techniques.

2 DNN REPAIRING AND MOTIVATION

In this section, we review existing repairing methods in DNN and motivate our method. In
Section 2.1, we thoroughly analyze previous DNN repair techniques from the viewpoint of differ-
ent repairing targets, e.g., the parameters (i.e., weights) of the whole network, layers, or neurons.
To this end, we formulate the core mechanism and compare the strengths and weaknesses of ex-
isting repairing techniques, which inspires and motivates us to develop the block-level repairing
method. To validate our motivation, we perform a preliminary study in Section 2.2.

2.1 DNN Repairing Techniques

In the standard training process, given a training dataset, we can train a DNN denoted as ϕ (W,A)

where A represents the network architecture related parameters determining what operations
(e.g., convolution layer, pooling layer) are used in the architecture, andW is the respective weights
(i.e., parameters of different operations). Generally, the architecture A is pre-defined and fixed
during the training and testing processes. The variableW consists of weights for different layers.

Although existing DNNs (e.g., ResNet [25]) have achieved significantly high accuracy on pop-
ular datasets, incorrect behaviors are always found in these models when we deploy them in the
real world or test them on challenging datasets. There are a series of works that study how to
repair these DNNs to be generalizable to misclassified examples, challenging corruptions, or bias
errors [54, 59, 63, 72]. In general, we can formulate the existing repairing methods as

W∗ = Locator(ϕ (W,A),Drepair), (1)

Ŵ∗ = arg min
W∗

J(ϕ (W∗,A),Drepair), (2)

where W∗ is a subset of W and Ŵ∗ is the fixed counterpart of W∗. The dataset Drepair con-
tains the examples for repairing guidance. Different works may set different Drepair according to
the repairing scenarios. For example, Yu et al. [72] sets Drepair as the combination of the aug-
mented training dataset. We will show that our method can address different repairing scenar-
ios. Intuitively, Equation (1) is to find the weights we need to fix in the DNN, and Equation (2)
with a task-related objective function J(·) is to fix the selected weights W∗ and produce a new

one Ŵ∗.
The above formulation can represent a series of existing repairing methods. For example, when

we try to fix all weights of a DNN (i.e., W∗ = W) and set the objective function J(·) as the
task-related loss function (e.g., cross-entropy function for image classification) with different data
augmentation techniques on collected failure cases asDrepair to retrain the weights, we actually get
the methods proposed by [54] and [72]. In addition, when we employ the gradient loss of weights
and forward impact to localize the targeted weights and use a fitness function to fix localized
weights, the formulation becomes the method [59].

Nevertheless, with the general formulation in Equations (1) and (2), we can see that existing
repairing methods have the following limitations:

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:5

Table 1. Accuracy (%) and Execution Time (s/100 Epochs) of Applying Repairing Method at Different

Levels on 3 Different DNNs Trained and Tested on CIFAR-10 and Tiny-ImageNet Datasets

Scale
ResNet-18 ResNet-50 ResNet-101

Accuracy (%) Execution Time Accuracy (%) Execution Time Accuracy (%) Execution Time

C
IF

A
R

-1
0

Original 85.00 - 85.17 - 85.31 -

Neuron-level 85.18 650.49 85.23 4,054.29 85.39 6,853.47

Layer-level 85.16 590.47 85.24 4,159.93 85.41 4,956.81

Block-level 85.19 760.94 85.24 3,976.39 85.47 7,118.03

Network-level 85.73 1,456.92 84.80 5,735.61 87.43 9,889.35

T
in

y
-I

m
ag

eN
et Original 45.15 - 46.26 - 46.14 -

Neuron-level 45.23 1,847.59 46.17 13,074.85 46.14 20,395.79

Layer-level 45.23 1,854.37 46.24 12,796.91 46.15 18,497.53

Block-level 45.30 2,011.84 46.27 13,452.17 46.22 24,774.15

Network-level 45.52 2,574.81 46.41 17,495.88 46.55 32,908.43

— Existing works only fix the targeted DNN either at the network-level (i.e., fixing all weights
of the DNN) or at the neuron-level (i.e., only fixing partial weights of the DNN), and ignore
the effects of the architecture A.

— Only repairing some specific weights in a layer could easily neglect the relationship between
different layers while repairing the whole network’s weights leads to high costs.

Note that, the state-of-the-art DNNs (e.g., ResNet [25]) are often made up of several blocks where
each block is built with stacked convolutional and activation layers. Such block-like architecture
is mainly inspired by the philosophy of VGG nets [57] and its effectiveness has been demonstrated
in wide applications. Therefore in this work, we focus on DNN repairing at the block level. In
particular, we consider both the architecture and weights repairing of a specific block.

2.2 Empirical Study and Motivation

First, we perform a preliminary experiment to discuss the effectiveness of the repairing methods
at different levels. In this experiment, we choose 3 variants of ResNet [25] (specifically, ResNet-18,
ResNet-50, and ResNet-101) as the targeted DNNs ϕ, and we select CIFAR-10 and Tiny-ImageNet
dataset as the experimental environment. We repair the DNN at four levels, i.e., Neuron-level (i.e.,
only fixing weights of one neuron), Layer-level (i.e., only fixing the weights of one layer), Block-
level (i.e., fixing the weights of a block) and the Network-level (i.e., fixing all weights of the DNN).
Inspired by recent work [59], we choose the neuron (or layer/block) with the greatest gradient
(mean gradient for layer and block) as our target to fix. Note that as the previous works have
shown that repairing DNN with only a few failure cases is meaningful and important [54, 72],
we only randomly select 100 failure cases from the testing dataset to calculate the gradients and
choose such neuron (or layer/block). Then, we adjust the weights of the chosen neuron/layer/block
by gradient descent w.r.t. the loss function (e.g., cross-entropy loss for image classification). To
compare their effectiveness, we apply all methods on the same training dataset of CIFAR-10 and
Tiny-ImageNet, then measure the accuracy on the respective testing dataset. We also record the
execution time of the total repairing phase (100 epochs) as the indicator of time cost. We show the
repairing result in Table 1. Note that, we repeat each experiment five times and take the average
of each result.

According to Table 1, the network-level repairing achieves the highest accuracy on ResNet-18
and ResNet-101 when repairing on CIFAR-10 dataset, and all 3 variants of ResNet when repair-
ing on Tiny-ImageNet dataset, but also leads to the highest time cost under every configuration.
Among 3 other levels of repairing methods, the block-level repairing achieves the highest accu-
racy improvement without having a drastic increment on time cost (i.e., the run-time increment

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:6 H. Qi et al.

comparing with neuron-level and layer-level is less than 500 seconds on 100 epochs across all 3
ResNets) when repairing on both CIFAR-10 and Tiny-ImageNet.

Overall, the network-level repairing is significantly effective in accuracy improvement but leads
to a high time cost. Nevertheless, the block-level repairing achieves impressive accuracy enhance-
ment with much less execution time compared to network-level method (e.g., about 2× less on
ResNet-18), making it a good tradeoff between effectiveness and efficiency. This fact inspires and
motivates us to further investigate the block-level repairing method.

3 BLOCK-LEVEL ARCHITECTURE AND WEIGHTS REPAIRING

In this section, we first provide an overview of our method in the Section 3.1 by presenting our intu-
itive idea and the main pipeline containing two key modules, i.e., Vulnerable Block Localization and
Architecture-oriented Search-based Repairing. After that, we detail the first module in Section 3.2
and the second module in Section 3.3, respectively. The first module is to locate the vulnerable
block in a deployed DNN, while the second module is to repair the architecture and weights of the
localized block by formulating it as an architecture searching problem.

3.1 Overview

Given a deployed DNN ϕ (W,A) , the weights and architecture usually consists of several blocks,
each of which is built by stacking basic operations, e.g., convolutional layer. Then, we represent
the weights and architecture with B blocks, i.e., W = {W i

b
}Bi=1 and A = {Ai

b
}Bi=1, where the

weights or architecture of each block are made up of one or multiple layers. For example, when we
consider the ResNet18 [25], we can say that it has six blocks (See Table 2). The first block contains
only one convolution layer with the kernel size of 7 × 7 × 64 and the stride of 2. The second to
the fifth blocks have two convolutional layers and the last block contains a fully connected layer
and a softmax layer. Then, we can reformulate Equations (1) and (2) for the proposed block-level
repairing by

(W∗
b ,A

∗
b) = Locator(ϕ ({W i

b
}B
i=1, {A

i
b
}B
i=1),Drepair), (3)

(Ŵ∗
b , Â

∗
b) = arg min

(W∗
b
,A∗

b
)

J(ϕ (W∗
b
,A∗

b
),Drepair), (4)

where Equation (3) is to locate the block (i.e., (W∗
b
,A∗

b
)) that should be fixed through the proposed

adversarial-aware block localization, and Equation (4) is to repair the localized block by formulat-
ing it as a network architecture searching problem. Clearly, compared with the general repairing
method (i.e., Equations (1) and (2)), the proposed method focuses on fixing the weights and archi-
tecture at the block level. We detail the vulnerable block localization in Section 3.2 and architecture

search-based repairing in Section 3.3.
There are two main solutions for vulnerable neuron localization [14, 59]. The first one employs

the neuron spectrum analysis during the forward process of DNN on a testing dataset. It calcu-
lates the spectrum of all neurons (e.g., activated/non-activated times of neurons for correctly clas-
sified examples and activated/non-activated times of neurons for misclassified examples). These
attributes are used to measure the suspiciousness of all neurons. The general principle is that a
neuron is more suspicious when the neuron is more often activated under the misclassified ex-
amples than that under the correctly classified examples [14]. This solution is able to localize the
vulnerable neurons accurately but requires a large testing dataset, which is not suitable for the
scenario where a few examples are available for repairing. The second solution is to actively lo-
calize the vulnerable neurons by performing backpropagation on the misclassified examples and
calculating the gradients of neurons w.r.t. the loss function. The neurons with large gradients are

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:7

Table 2. Network Architectures and Their Respective Blocks

VGGNet ResNet EfficientNet

Block 16-layer 18-layer 50-layer 101-layer B0

Blk1 Conv:

⎡⎢⎢⎢⎢⎢⎣
3 × 3, 64
3 × 3, 64
maxpool

⎤⎥⎥⎥⎥⎥⎦ conv1: 7 × 7, 64, stride 2 Conv: 3 × 3, 32, stride 2

Blk2
Conv:

⎡⎢⎢⎢⎢⎢⎣
3 × 3, 128
3 × 3, 128
maxpool

⎤⎥⎥⎥⎥⎥⎦
3 × 3 max pool, stride 2

MBConv1: 3 × 3, 16, stride 2

conv2:

[
3 × 3, 64
3 × 3, 64

]
× 2

⎡⎢⎢⎢⎢⎢⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤⎥⎥⎥⎥⎥⎦ × 3

⎡⎢⎢⎢⎢⎢⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤⎥⎥⎥⎥⎥⎦ × 3

Blk3 Conv:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
3 × 3, 256
3 × 3, 256
3 × 3, 256
maxpool

⎤⎥⎥⎥⎥⎥⎥⎥⎦
conv3:

[
3 × 3, 128
3 × 3, 128

]
× 2

⎡⎢⎢⎢⎢⎢⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤⎥⎥⎥⎥⎥⎦ × 4

⎡⎢⎢⎢⎢⎢⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤⎥⎥⎥⎥⎥⎦ × 4 MBConv6: 3 × 3, 24, stride 1

Blk4 Conv:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
3 × 3, 512
3 × 3, 512
3 × 3, 512
maxpool

⎤⎥⎥⎥⎥⎥⎥⎥⎦
conv4:

[
3 × 3, 256
3 × 3, 256

]
× 2

⎡⎢⎢⎢⎢⎢⎣
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤⎥⎥⎥⎥⎥⎦ × 6

⎡⎢⎢⎢⎢⎢⎣
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤⎥⎥⎥⎥⎥⎦ × 23 MBConv6:

[
5 × 5, 40
5 × 5, 40

]
, stride 2

Blk5 Conv:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
3 × 3, 512
3 × 3, 512
3 × 3, 512
maxpool

⎤⎥⎥⎥⎥⎥⎥⎥⎦
conv5:

[
3 × 3, 512
3 × 3, 512

]
× 2

⎡⎢⎢⎢⎢⎢⎣
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤⎥⎥⎥⎥⎥⎦ × 3

⎡⎢⎢⎢⎢⎢⎣
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤⎥⎥⎥⎥⎥⎦ × 3 MBConv6:

⎡⎢⎢⎢⎢⎢⎣
3 × 3, 80
3 × 3, 80
3 × 3, 80

⎤⎥⎥⎥⎥⎥⎦ , stride 2

Blk6 FC:

⎡⎢⎢⎢⎢⎢⎣
4, 096 − d
4, 096 − d
1, 000 − d

⎤⎥⎥⎥⎥⎥⎦ average pool, 1,000-d fully-connection, softmax MBConv6:

⎡⎢⎢⎢⎢⎢⎣
5 × 5, 112
5 × 5, 112
5 × 5, 112

⎤⎥⎥⎥⎥⎥⎦ , stride 1

Blk7 – – MBConv6:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
5 × 5, 192
5 × 5, 192
5 × 5, 192
5 × 5, 192

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, stride 2

Blk8 – – MBConv6: 3 × 3, 320, stride 1

Blk9 – – 1 × 1 Conv, pool, 1000-d FC

responsible for the misclassification [59]. This solution is able to localize the vulnerable neuron
with fewer examples but ignores the effects of correctly classified examples. As shown in Figure 1,
with different failure examples, the gradients of different convolutional blocks in ResNet18 may
have similar values, which demonstrates that the gradient-based localization is not sensitive to the
variance of the number of failure examples.

Overall, existing methods mainly focus on localizing vulnerable neurons while ignoring the
blocks in DNNs. In addition, they have their respective defects. In this work, we propose a novel lo-
calization method that aims at finding the most vulnerable block in the DNN, which can lead to the
buggy behavior of a deployed DNN. To take the respective advantages of existing works and avoid
their defects, we propose adversarial-aware spectrum analysis to localize the vulnerable block.

3.2 Adversarial-aware Spectrum Analysis for Vulnerable Block Localization

3.2.1 Neuron Spectrum Analysis. Given a dataset Drepair for repairing and the targeted DNN
ϕ (W,A) , we calculate the spectrum attributes of the jth neuron in W by counting the times
of activation and non-activation for the neuron under the correctly classified examples and

denote them as N j
ac and N j

nc, respectively. Similarly, we can count the times of activation and

non-activation for the same neuron under the misclassified examples and name them as N j
am and

N j
nm, respectively. Then, we calculate a suspiciousness score for each neuron via the Tarantula

measure [29],

sj =
N j

am/(N
j
am + N

j
nm)

N j
am/(N

j
am + N

j
nm) + N j

ac/(N
j
ac + N

j
nc),

(5)

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:8 H. Qi et al.

Fig. 1. Average gradients of different blocks in ResNet-18 for different Drepair

fail
sizes.

where sj determines the suspiciousness of the jth neuron and the higher sj means the jth neuron
is more vulnerable.

3.2.2 Adversarial-aware Block Spectrum Analysis. With the above neuron spectrum analysis, we
can obtain the suspiciousness scores for all neurons and the suspiciousness set S = {sj }. Never-
theless, these suspiciousness scores depend on the statistical analysis and are not related to the
objective directly, which leads to less effective localization. To alleviate the issue, we propose to re-
fine the suspiciousness scores with adversarial information under the guidance of the loss function
(e.g., cross-entropy function for classification).

Specifically, we select the failure examples in Drepair and construct a subset denoted as Drepair

fail
.

For each example in Drepair

fail
, we can calculate the gradient of all neurons w.r.t. the loss function.

Then, we average the gradients of a neuron on all examples and get a set G = {дj } where дj is

the averaging gradient of the jth neuron on all examples inDrepair

fail
. Intuitively, the larger gradient

means that the corresponding neuron may significantly contribute to misclassification and should
be tuned to minimize the loss. For the ith block, we denote its gradient as the average of the
gradients of all neurons in that block, i.e., Gi =

1
|Wi

b
|
∑

wj ∈Wi
b
дj . We also calculate the averaging

gradient across all neurons, i.e., G = 1
B

∑B
i=1Gi . Then, we use these gradients to reweight the

suspiciousness scores of all neurons.

ŝj =
|дj −G |

max({|дj −G |})
sj . (6)

The principle behind this strategy is that the suspiciousness score of the jth neuron decreases
when its relative gradient is small. As a result, we can update the suspiciousness set S and get

Ŝ = {ŝj }.
A block in the DNN consists of a series of neurons and we collect the updated suspiciousness

scores of the neurons in the ith block to the set Ŝi ∈ Ŝ. There are B suspiciousness sets and

Ŝ = {Ŝi }Bi=1. After that, we use a threshold (i.e., ϵ) to select the vulnerable neurons, that is, the
neuron with ŝj > ϵ is identified as the vulnerable neuron. Then, we can count the number of

vulnerable neurons in each Ŝi and the block with the most vulnerable neurons is identified as the
targeted block we would repair.

We summarize the whole process of the block localization in Algorithm 1. We first calculate the
suspiciousness score of all neurons (Line 1) and calculate the average gradients on each neuron
(Line 2). Then, we update the suspiciousness score by calculating the average gradients on each
block (Line 3). Finally, we select a threshold to identify the vulnerable blocks (Line 4:5). To validate
its advantages, we conduct an experiment to compare the effectiveness and stability of the blocks

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:9

ALGORITHM 1: Vulnerable block localization

Input: A DNN ϕ (W,A) and datasets Drepair and Drepair
fail

Output:W∗
b

,A∗
b

1 Calculate suspiciousness scores S of all neurons via Equation (5);

2 Calculate the gradients of all neurons on Drepair
fail

and get G;

3 Update the suspiciousness scores S and get Ŝ;

4 Identify the vulnerable neurons via a threshold ϵ ;

5 Localize the vulnerable block with the maximum number of vulnerable neurons;

positioned fromS and Ŝ, respectively. To compare the stability of the method, we changed the size

of the datasetDrepair

fail
. We observe that as the size of the dataset changes, the suspicious neurons on

each block obtained by S vary significantly while those obtained by Ŝ are much more stable and
lead to unanimous conclusions. As shown in Figure 2, according to the experiments on ResNet-18,

by the number of suspicious neurons contained in the block, S and Ŝ estimated that “block 1” and
“block 4” are the most vulnerable, respectively. We observed similar results when the threshold ϵ
are set to other values (e.g., ϵ10, ϵ20, ϵ30, ϵ40, ϵ100). We also conduct detailed quantitative analysis
and discussion in Section 5.3, presenting that repairing the most vulnerable block, i.e., “block 4”,
achieves much higher improvement.

3.3 Architecture-oriented Search-based Repairing

After localizing the targeted block, how to break the old architecture’s bottleneck and fix it to
become competent in the tasks is another challenge. To this end, we formulate the very first block-
level architecture and weights repairing as the network architecture search task. Given a deployed
DNN with pre-trained weights and fixed architecture (i.e.,ϕ (W,A)), we first relax the targeted block
(i.e.,ϕ (W∗

b
,A∗

b
)) to a directed acyclic graph like the cell structure in the differentiable architecture

search (DARTS) [39], which is composed of an ordered sequence of nodes that are connected by
edges. Intuitively, the node corresponds to the deep feature while the edge denotes the operation
layer like the convolutional layer. Our goal is to optimize the edges, i.e., to determine which two
nodes should be connected and which operation should be selected for that connection. To this
end, the key issues are to define the architecture search space and optimization strategy.

3.3.1 Architecture Search Space for the Targeted Block. To better illustrate the process of archi-
tecture search, we take ResNet as an example. Given a block in ResNet containing K operation
layers, we reformulate it as a directed acyclic graph that has K + 1 nodes {Xk }K

k=1
and allow each

node to accept the outputs from all previous nodes instead of following the sequential order. As
shown in Figure 3, we present an example of the graph representation of the targeted block via
nodes and edges. Specifically, we denote the edge for connecting the ith and jth nodes as e(i, j) and

the node X
j can be calculated by

X
j =

∑
i=[1, j−1]

e(i, j) (X
i), (7)

where e(i, j) (X
i) is an edge taking the node X

i as the input. Then, we define an operation set O
containing six candidate operations as presented in Table 3, each of which can be set as the edge.
This set of operations is selected in coordination with our NAS method [70]. For example, when
we select “None” for e(i, j) , the two nodes X

i and X
j should not be connected.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:10 H. Qi et al.

Fig. 2. Collected suspicious neurons in blocks of VGGNet-16, ResNet-18, and ResNet-50 when setting thresh-

old ϵ equal to the value that select top-50 neurons from suspicious ranking, with S(left) and Ŝ(right),

respectively.

Note that, the raw sequentially ordered block of ResNet is a special case in the defined search
space and we can naturally inherent the raw weights and architecture setup as the initialization
for the following optimization.

3.3.2 Architecture and Weights Optimization. The optimization goal is to select a suitable op-
eration for each edge from the operation set. To this end, we relax the selection as a continuous

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:11

Fig. 3. The overall workflow of ArchRepair . Given a deployed DNN model, we first apply the Vulnerable

Block Localization to identify the most vulnerable block. Then, we continue to formulate the block repairing

as a DNN architecture search problem, and the block’s architecture and parameters are optimized jointly

through Architecture-oriented Search-based Repairing.

Table 3. All Operators in the Operation Set O

Operators Operations

None Add a Zero CNN layer whose weights are all zero.
Skip Add an Identity CNN layer whose weights are all one.
AvgPool Add an Average Pooling layer and an Identity CNN layer.
MaxPool Add a Max Pooling layer and an Identity CNN layer.
SepConv Add separated CNN layers.
DilConv Add a CNN layer with the dilation kernel and an Identity CNN layer.

process by regarding the edge connecting the node i and j as a weighted combination of the outputs
of all candidate operations

e(i, j) (X
i) =
∑
o∈O

exp (αo
(i, j)

)
∑

o′ ∈O exp (αo′

(i, j)
)
o(Xi), (8)

where the parameter αo
(i, j)

determines the combination weight of using the operation o for con-

necting the ith and jth nodes. As a result, we can define the architecture parameters for the edge
e(i, j) as a vector a(i, j) = [αo

(i, j)
|o ∈ O] assigning each operation in the O a combination weight.

Moreover, for the whole block, we denote its architecture as A∗
b
= {a(i, j) } and respective param-

eters for all candidate operations as W∗
b
= {w(i, j) }. Then, we can specify the repairing process

in Equation (4) by optimizing the weights (i.e.,W∗
b

) and architecture parameters (i.e., A∗
b
) on the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:12 H. Qi et al.

training dataset and validation dataset, alternatively, that is, we have

Ŵ∗
b = arg min

W∗
b

J
(
ϕ (W∗

b
,A∗

b) ,D
repair
train

)
, (9)

Â∗b = arg min
A∗

b

J
(
ϕ (Ŵ∗

b
,A∗

b

) ,Drepair

val

)
, (10)

where J(·) is specified as the cross-entropy loss function for the image classification task. During
the training process, we initialize the block architecture A∗

b
as the raw block architecture of

the targeted DNN, and update the architecture and weights, alternatively. We will illustrate

the repairing process in Section 3.4. After getting the optimized architecture (i.e., Â∗
b
) in the

continuous search space, we set the operation with maximum combination weight as the edge,

i.e., e(i, j) = arg maxo∈O α
o
(i, j)

. Then, we retrain the weights Ŵ∗
b

with fixed block architecture.

3.4 Our Repairing Algorithm of ArchRepair

Figure 3 summarizes the whole workflow of ArchRepair . Given a deployed DNN, we first employ
the proposed vulnerable block localization to determine the block we aim at repairing. Specifically,
we use the repair datasetDrepair and the neuron spectrum analysis to calculate the suspiciousness

of all neurons, i.e., S = {sj }. Meanwhile, we use the failure examples in Drepair (i.e., Drepair

fail
) to

obtain the gradients of all neurons w.r.t. the loss function (i.e., G = {дj }). Then, we use Equation (6)

and the gradients G = {дj } to reweight S = {sj }, thus get the suspiciousness scores Ŝ = {ŝj }. After
that, we can calculate the number of vulnerable neurons through a threshold ϵ , that is, when the

suspiciousness score of a neuron Ŝ = {ŝj } is larger than ϵ , the neuron is identified as a vulnerable
case. Finally, the block with the largest number of vulnerable cases is selected as the targeted block
we want to repair.

During the architecture search-based repairing, we reformulate the targeted block as a directed
acyclic graph, where the deep features are nodes and operations are edges. Then, we relax each
edge as a combination of six operations (i.e., Equation (8)), where the combination weights cor-
respond to the architecture parameters A∗

b
= {a(i, j) }. We use the dataset Drepair to conduct the

architecture and weights optimization via Equations (9) and (10), where the original architecture
and weights are inherited and serve as the optimization initialization. Therefore, given the opti-

mized block architecture in the continuous space (i.e., Â∗
b
), we discretize it to the final architecture

by preserving the operation with the maximum combination weight and removing other opera-
tions. Finally, we use the Drepair to fine-tune the weights by fixing the optimized architecture for
the repaired DNN.

4 EXPERIMENTAL DESIGN AND SETTINGS

In this section, we conduct extensive experiments to validate the proposed methods and compare
with the state-of-the-art DNN repair techniques, to investigate the following research questions:

— RQ1. Does ArchRepair outperform the state-of-the-art (SOTA) DNN repair techniques
with better repairing effects?

— RQ2. Could ArchRepair repair DNNs on certain failure patterns without sacrificing robust-
ness on clean data and other failure patterns?

— RQ3. Is our proposed localization method effective in identifying vulnerable neuron blocks?
— RQ4. How do different components of our proposed method impact the overall repairing

performance?

RQ1 intends to evaluate the overall repairing capability of ArchRepair and to compare it to SOTA
DNN repair techniques as baselines. RQ2 aims at exploring the potential of our method in repairing

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:13

DNN on corrupted data, which are common robustness issues during DNN practical usage in the
operational environments. RQ3 intends to examine whether the proposed localization method can
precisely locate vulnerable blocks. RQ4 is to explore the contribution that each of ArchRepair’s
key components makes on the overall performance of DNN repair.

4.1 Experimental Setups

To answer the research questions above, we design our evaluation from multiple perspectives listed
in the following.

Subject Datasets and Repairing Scenarios. Given a deployed DNN trained on a training
dataset Dt, we can evaluate it on a testing dataset Dv. In the real world, there are a lot of scenes
that cannot be covered by Dv and the DNN’s performance may decrease significantly after the
DNN is deployed in its operational environment. For example, there are common corruptions (i.e.,
noise patterns) in the real world that can affect the DNN significantly [26]: Gaussian noise (GN),
shot noise (SN), impulse noise (IN), defocus blur (DB), Gaussian blur (GB), motion blur

(MB), zoom blur (ZB), snow (SNW), frost (FRO), fog (FOG), brightness (BR), contrast (CTR),
elastic transform (ET), pixelate (PIX), and JPEG compression (JPEG).

According to the aftermentioned situations, we consider two repairing scenarios that commonly
occur in practice:

— Repairing the accuracy drift on the testing dataset. When we evaluate the DNN on the
testing dataset Dv, we can collect a few failure examples (i.e., 1,000 examples) denoted as
Dv

fail
. Then, we setDrepair = Dv

fail
∪Dt and use the proposed or baseline repairing methods to

enhance the deployed DNNs. We evaluate the accuracy on the testing dataset whereDv
fail

is
excluded (i.e.,Dv\Dv

fail
). Note that, the context of repairing DNN with only a few testing data

is meaningful and important, which is adopted by recent works [54, 72]. In addition, there
could be many practical scenarios, where collecting buggy examples is very difficult or at
very high costs, with only a few buggy examples collected entirely. Hence, we follow the com-
mon choice in recent works [54, 72] to select only 1,000 failure examples from testing data.

— Repairing the robustness on corrupted datasets. When we evaluate the DNN on a
corrupted testing datasetDc, we can also collect a few failure examples (i.e., 1,000 examples)
denoted asDc

fail
and setDrepair = Dc

fail
∪ Dt. The repairing goal is to enhance the accuracy

on Dc \ Dc
fail

and other corrupted datasets while maintaining the accuracy on the clean
testing dataset (i.e., Dv \ Dv

fail
).

We choose CIFAR-10 [33], CIFAR-100 [33], Tiny-ImageNet [36], and ImageNet [11] as the eval-
uation datasets. They are commonly used datasets in recent DNN repair studies, enabling us to
perform comparative studies in a relatively fair way. Each dataset contains its respective training
dataset Dt and testing dataset Dv. CIFAR-10 contains a total of 60,000 images in 10 categories,
in which 50,000 images are for Dt and the other 10,000 are for Dv. CIFAR-100 has 100 classes
containing 600 images each. There are 500 images in the training dataset Dt and 100 images in
the testing dataset Dv for each class. Tiny-ImageNet has a training dataset Dt with the size of
100,000 images, and a testing dataset Dv with the size of 10,000 images. ImageNet contains over
14 million images. In our experiment, the training datasetDt uses 1.3 million images, and the test-
ing datasetDv uses over 50,000 images. Therefore, we have corrupted testing datasets {Dc

i } where
i = 1, 2, . . . , 15 corresponding to the above fifteen corruptions [26].

DNN architectures. We select six different architectures of DNN, i.e., VGGNet-16 [58],
ResNet-18, ResNet-50, ResNet-101 [25], DenseNet-121 [27], and EfficientNet-B0 [60]. Given
that ArchRepair is a block-based repairing method, the block-like architecture, ResNet, turns
out to be a perfect research subject. For a broad comparison, we also choose a non-block-like

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:14 H. Qi et al.

architecture, DenseNet-121, to examine the repairing capability of ArchRepair .1 For each archi-
tecture, we first pre-train them with the original training dataset Dt (from CIFAR-10, CIFAR-100,
Tiny-ImageNet or ImageNet), the model with the highest accuracy in testing dataset Dv (from
CIFAR-10, CIFAR-100, Tiny-ImageNet or ImageNet) will be saved as pre-trained model ϕθ . As the
original ResNet and DenseNet are not designed for CIFAR-10 and Tiny-ImageNet datasets, we
use the unofficial architecture code offered by a popular GitHub project,2 which has more than
4.1 K stars.

Block definition. We divide each of the six selected DNN architectures into several blocks.
For each of ResNet-18, ResNet-50, and ResNet-101, we follow its block structures and divide it into
four blocks, as shown in Table 2. For DenseNet-121, we divide it by every two convolutional layers
as one block. For VGGNet-16, we manually divide it into six blocks by maxpool layer as Table 2
shows and select five of them as repairing targets (i.e., Block 1~5, Block 6 is used for getting output,
so we left it out of repairing). For EfficientNet-B0, we follow its block structures and divide them
into seven blocks (see Table 2).

NAS method. We select PC-DARTS [70] as our NAS solution for ArchRepair . While all popular
NAS techniques should fit into ArchRepair(e.g., DARTS, SNAS, and BayesNAS), these techniques
use more time than PC-DARTS in searching for a better network architecture. Given that DNN
repair is a time-sensitive task, we choose PC-DARTS [70] as it is among the fastest NAS methods.
Though ArchRepairremains the interface for switching to other NAS techniques when the task
cares more about the performance of repaired models than the time cost of repairing.

Hyper-parameters. Regarding the training setup, we employ stochastic gradient descent

(SGD) as the optimizer, setting batch size as 128, the initial learning rate as 0.1, and the weight
decay as 0.0005. We use the cross-entropy loss as the loss function. The maximum number of
epochs is 500, and an early-stop function will terminate the training phase when the validation
loss no longer decreases in 10 epochs.

Baselines. To demonstrate the repairing capability of the proposed ArchRepair , we select six
SOTA DNN repair methods from two different categories as baselines: neuron-level repairing meth-
ods and network-level repairing methods. The neuron-level repairing methods focus on fixing cer-
tain neurons’ weights in order to repair the DNNs. Representative methods from this category
are MODE [45], Apricot [74], and Arachne [59]. While network-level repairing methods mainly
repair DNNs by using augmented datasets to fine-tune the whole network, where SENSEI [19],
Few-Shot [54], and DeepRepair [72] are the most popular ones. For a fair comparison, we employ
the same settings on all six repairing methods and ArchRepair . In order to fully evaluate the effec-
tiveness of the proposed method, we apply all methods (six baselines and ArchRepair) to fix four
different DNN architectures on large-scale datasets, including the clean version and 15 corrupted
versions from CIFAR-10 and Tiny-ImageNet, to assess the repairing capability.

Other configurations. We implement ArchRepair in Python 3.9 based on PyTorch framework.
All the experiments were performed on a server with a 12-core 3.60 GHz Xeon CPU E5-1650,
128 GB RAM, and four NVIDIA GeForce RTX 3,090 GPUs (each has 4 GB memory), which runs
Ubuntu 18.04.

In summary, for each baseline method and ArchRepair , our evaluation consists of 96 configura-
tions (6 DNN architectures × 16 versions of a dataset3) on four datasets (i.e., CIFAR-10, CIFAR-100,
Tiny-InageNet, and ImageNet. For CIFAR-10 dataset, an execution of training and repairing a

1For DenseNet-121, we manually group two consecutive convolution blocks as one block when repairing.
2Train CIFAR10 with PyTorch: https://github.com/kuangliu/pytorch-cifar.
3one clean dataset (repairing the accuracy drift on testing dataset) and fifteen corruption datasets (repairing the robustness

on corrupted datasets).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

https://github.com/kuangliu/pytorch-cifar

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:15

Table 4. Execution Time of Repairing 6 Different DNNS (i.e., VGGNet-16, ResNet-18, ResNet-50,

ResNet-101, DenseNet-121, and EfficientNet-B0) Repaired on CIFAR-10 within 100 Epochs by

Different Repairing Methods

CIFAR-10
Execution time (100 epochs)

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0

N
eu

ro
n

-l
v MODE [43] 2h17m 2h41m 3h37m 4h36m 6h58m 4h11m

Apricot [70] 3h09m 3h31m 4h15m 5h32m 8h06m 4h15m
Arachne [56] 2h17m 2h31m 3h54m 4h58m 7h25m 3h09m

N
et

w
o

rk
-l

v SENSEI [18] 46h18m 48h21m 54h25m 68h32m 82h36m 57h03m
Few-Shot [51] 27h18m 28h51m 32h11m 40h25m 47h36m 30h39m
DeepRepair [68] 49h21m 51h47m 56h23m 65h23m 72h16m 61h32m

ArchRepair (ours) 18h15m 18h37m 21h34m 29h17m 33h25m 23h17m

The result describes ArchRepair uses less repairing time than Network-lv’s methods and has excellent

repairing performance.

model under one specific configuration costs about 12 hours on average (the maximum one is
about 50 hours); while for Tiny-ImageNet dataset, an execution of training and repairing a model
takes about 18 hours on average (the maximum one is about 64 hours). We measured the execution
time of repairing six different DNN architectures (i.e., VGGNet-16, ResNet-18, ResNet-50, ResNet-
101, DenseNet-121, and EfficientNet-B0) repaired on CIFAR-10 within 100 epochs by different
repairing methods. The results are reported in Table 4. According to Table 4, the Neuron-lv’s
methods use less execution time than other repairing methods (The cell with green background),
and the Network-lv’s methods use more execution time than others. Our method, ArchRepair ,
uses more execution time than Neuron-lv’s methods but less than Network-lv’s methods. This
is because ArchRepair repairs DNN models on the block level, which works at a larger size than
the neuron level but at a smaller size than the network level. This is also consistent with our
expectation in Section 2.2, i.e., block-level repairing makes a good tradeoff between effectiveness
and efficiency. Overall, the total execution time of our experiments takes more than two months.

5 EXPERIMENTAL RESULTS

In this section, we summarize the high-level results and findings to answer our research questions.
We present more detailed evaluation results, configurations as well as a replication package on our
supplementary website [52] of this article.

5.1 RQ1: Does ArchRepair Outperform the State-of-the-arts (SOTA) DNN Repair

Techniques?

To answer RQ1, we train 6 DNNs (i.e., VGGNet-16, ResNet-18, ResNet-50, ResNet-101, DenseNet-
121, and EfficientNet-B0) on 4 datasets’ (i.e., CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet)
training datasets (i.e., Dt) and evaluate them on testing datasets (i.e., Dv), respectively. To eval-
uate the performance of our method (i.e., ArchRepair), we apply six different SOTA methods as
well as ArchRepair to repair these 4 DNNs. The evaluation results of repairing are summarized in
Table 5. In general, ArchRepair exhibits significant advantages over all baseline methods on the
6 DNNs, demonstrating the effectiveness and generalization ability of the proposed method. In
particular, comparing with the state-of-the-art DNN repair methods (i.e., neuron-level repairing
method Arachne [59], and network-level repairing method DeepRepair [72]), ArchRepair achieves
much higher accuracy on 5 out of 6 DNNs on CIFAR-10 dataset. On the more challenging dataset,
Tiny-ImageNet, ArchRepair still achieves much higher accuracy on 3 out of 6 DNNs. Note that on

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:16 H. Qi et al.

Table 5. Average Accuracy (%) of 6 Different DNNs (i.e., VGGNet-16, ResNet-18. ResNet-50, ResNet-101,

DenseNet-121, and EfficientNet-B0) Repaired on 4 Dataset (i.e., CIFAR-10, Tiny-ImageNet, CIFAR-100,

and ImageNet) by Different Repairing Methods

Baseline
CIFAR-10 Tiny-ImageNet

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0 VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0

Original 83.72 85.00 85.17 85.72 87.97 88.93 42.87 45.15 46.27 46.14 48.73 49.25

MODE [45] 84.22 85.48 85.08 85.78 88.64 88.89 43.37 45.47 45.90 46.40 47.86 51.61
Apricot [74] 84.33 86.78 88.95 89.25 90.23 86.97 43.04 46.08 46.79 45.35 45.14 50.48
Arachne [59] 84.23 85.09 87.45 89.35 91.20 88.99 44.17 46.93 47.14 46.43 46.93 51.60

SENSEI [19] 84.53 85.07 86.33 89.13 89.45 88.89 44.49 45.91 47.10 46.12 45.70 52.40
Few-Shot [54] 84.67 86.21 86.49 88.06 88.44 88.14 44.01 46.32 46.62 45.90 45.31 52.42
DeepRepair [72] 85.00 86.68 87.08 88.98 90.78 92.12 45.84 46.92 47.69 46.58 46.68 52.45

ArchRepair (ours) 85.58 88.53 88.96 90.20 91.36 91.35 45.69 46.96 47.51 46.75 46.37 52.62

Baseline
CIFAR-100 ImageNet

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0 VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0

Original 60.27 62.58 63.74 63.97 65.89 67.42 64.72 64.81 65.79 66.28 67.85 69.05

MODE [45] 61.08 63.76 63.87 65.04 65.10 67.93 64.29 64.95 65.59 67.32 68.29 69.54
Apricot [74] 62.89 63.48 65.19 64.03 66.75 68.21 65.39 65.53 65.64 67.38 67.58 69.85
Arachne [59] 62.91 63.63 65.21 64.60 66.28 67.46 65.10 66.07 66.53 67.06 67.76 70.61

SENSEI [19] 61.96 64.27 65.20 65.64 66.50 69.28 65.37 65.59 66.02 67.62 68.20 71.69
Few-Shot [54] 62.46 63.95 64.92 65.06 67.87 68.69 66.77 66.49 65.72 67.52 68.99 70.34
DeepRepair [72] 62.67 64.36 65.77 66.63 67.95 69.76 66.61 66.41 66.71 67.61 69.91 72.12

ArchRepair (ours) 66.24 65.41 65.67 66.93 67.02 68.21 66.96 67.10 67.93 67.88 70.09 70.79

Note that each configuration of the experiment is repeated 5 times and the average results are summarized.

Table 6. Wilcoxon Signed-rank Test

n = 120
ArchRepair

MODE [45] Apricot [74] Arachne [59] SENSEI [19] Few-Shot [54] DeepRepair [72]

p 3.91E-19 < 0.01 5.09E-20 < 0.01 1.51E-18 < 0.01 3.37E-16 < 0.01 5.96E-17 < 0.01 1.55E-3 < 0.01

DenseNet-121, all the repairing methods failed to repair, i.e., failing to improve the performance
compared to the original network. One possible explanation is that the original DenseNet-121’s
performance has almost reached the upper bound of the classification accuracy on Tiny-ImageNet,
hence there might not be much room for improvement in terms of accuracy. To better illustrate
the performance of ArchRepair compared with other baselines, we also conduct the statistical test
(i.e., Wilcoxon Signed-rank Test) on the results obtained by our method, compared with each of
the 6 corresponding repairing methods across all 6 different models (i.e., VGGNet-16, ResNet-
18/50/101, DenseNet-101, and EfficientNet-B0), all the 4 evaluated datasets (i.e., CIFAR-10/100,
Tiny-ImageNet, and ImageNet). Table 6 summarizes the obtained statistical test results, which
demonstrate the advantage of our method to be statistically significant at the 0.01 confidence level
(i.e., p < 0.01), compared with the SOTA. We report the obtained significant test results in Table 6
and add a paragraph of discussion in the original article, the results confirm the advantage of our
method to be statistically significant at the 0.01 confidence level (i.e., p < 0.01).

Furthermore, to understand the influence of repairing on DNN’s robustness, we evaluate the
repaired DNNs’ performance on corruption datasets (i.e., CIFAR-10-C [26] and Tiny-ImageNet-
C [26]). The CIFAR-10-C and Tiny-ImageNet-C contain over 15 types of natural corruption
datasets, and we show the results on CIFAR-10-C in Figure 4 and Tiny-ImageNet-C in Figure 5. Ob-
viously in Figure 4, ArchRepair achieves the highest accuracy on a majority of corruption datasets
across three variants of ResNet (8/15, 9/15, and 7/15 on ResNet-18, ResNet-50, and ResNet-101,
respectively) besides the best performance on the clean dataset. Even on DenseNet-121, which
is not a block-like DNN, ArchRepair also achieves promising performance compared with SOTA
method Apricot [74]. The performance of ArchRepair is also significant on Tiny-ImageNet-C. As
we’ve mentioned before, Tiny-ImageNet is way more challenging. Nevertheless, ArchRepair still
outperforms baselines in terms of the robustness on a majority of corruption datasets across three

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:17

Fig. 4. Comparing the repairing methods on different DNNs (i.e., ResNet-18, ResNet-50, ResNet-101 and

DenseNet-121) by contrasting the accuracy of repaired DNNs on CIFAR-10’s testing dataset (i.e., Dt) and

corruption datasets (i.e., Dc).

variants of ResNet (9/15, 9/15, and 7/15 on ResNet-18, ResNet-50, and ResNet-101, respectively) as
well as the non-block-like DNN DenseNet-121 (8/15). The results confirm that ArchRepair doesn’t
harm the DNN’s robustness, and on the contrary, it can even sometimes improve DNN’s general-
ization ability towards classifying corrupted data.

Answer to RQ1: According to the experimental results on clean dataset, ArchRepair outper-
forms the SOTA repairing method on all 6 DNNs with different architectures (i.e., VGGNet-16,
ResNet-18, ResNet-50, ResNet-101, DenseNet-121, and EfficientNet-B0). Moreover, the experi-
mental results on corruption datasets also support that ArchRepair can repair a DNN without
harming its robustness.

5.2 RQ2: Can ArchRepair Fix DNN on a Certain Failure Pattern without Sacrificing

Robustness on Clean Data and other Failure Patterns?

In Section 5.1, our investigation results demonstrated that ArchRepair will not affect DNN’s robust-
ness when repairing on the clean dataset. Hence in this section, we continue to validate whether
our method harms DNN’s robustness when repairing a specific failure pattern.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:18 H. Qi et al.

Fig. 5. Comparing the repairing methods on different DNNs (i.e., ResNet-18, ResNet-50, ResNet-101, and

DenseNet-121) by contrasting the accuracy of repaired DNNs on Tiny-Imagenet’s testing dataset (i.e., Dt)

and corruption datasets (i.e., Dc).

We first verify the repairing capability of ArchRepair . We repair a deployed DNN (i.e., ResNet-
184) on each of the corruption datasets from CIFAR-10-C and Tiny-ImageNet-C, and compare
the performance with the other repairing methods, where the results are summarized in Table 7.
Comparing the experimental results on the corruption dataset, we see that all repairing methods
have the capability to repair the failure patterns, except shot noise (SN) on Tiny-ImageNet-C (all
repairing methods fail to repair this corruption pattern). Among these repairing techniques, our
method ArchRepair has the highest accuracy on 8 out of 15 the corruption datasets on CIFAR-10-C
dataset, and 9 out of 15 the corruption datasets on Tiny-ImageNet-C, respectively, demonstrating
that ArchRepair exhibits the advantages in repairing failure patterns.

To validate whether our method has harmed DNN’s robustness, we also evaluate the perfor-
mance of repaired DNNs on the other corruption datasets. The evaluation results on CIFAR-10
and Tiny-ImageNet are shown in Figures 6 and 7, respectively. Besides, we calculate the robust-
ness of repaired models with the formula used in SENSEI. The results of robustness are recorded
in Table 8. Comparing the accuracy difference on CIFAR-10-C (see Figure 6), we observe that the
DNNs repaired by ArchRepair (i.e., the red bar) have higher accuracies on both clean and

4More evaluation results on other DNNs are available on our project website [52].

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:19

Table 7. Accuracy (%) of a Deployed ResNet-18 Repaired by Different Repairing Methods

on 15 Different Corruption Patterns

ResNet-18 Clean GN SN IN DB GB MB ZB SNW FRO FOG BR CTR ET PIX JPEG

C
IF

A
R

-1
0-

C

Original 85.000 61.452 67.392 61.944 74.762 54.782 66.348 69.476 71.408 70.114 73.532 82.736 58.716 74.822 72.364 78.752
Apricot [74] 86.644 76.930 78.656 77.694 75.827 66.390 76.810 79.851 76.406 77.269 78.979 89.254 74.390 75.112 75.350 75.810
Arachne [59] 88.451 77.144 77.715 78.976 76.546 65.815 75.963 77.712 77.862 77.224 79.200 86.913 75.792 73.876 77.694 74.402
SENSEI [19] 86.525 68.762 70.471 73.345 76.842 60.244 71.229 73.297 73.732 73.814 76.975 83.006 64.861 72.814 75.833 79.495
DeepRepair [72] 88.159 75.197 73.990 75.807 77.369 63.263 75.703 74.973 76.999 76.872 77.884 83.967 72.889 76.594 74.669 77.726
ArchRepair (ours) 90.177 77.546 77.689 73.237 80.679 67.523 75.998 77.697 77.867 80.677 79.854 85.146 79.026 78.053 77.448 77.967

T
in

y
-I

m
ag

eN
et

-C Original 45.150 15.912 16.972 15.482 14.281 14.337 13.648 12.191 13.562 16.452 15.119 13.823 6.130 12.657 10.819 13.577
Apricot [74] 46.732 16.703 15.270 15.339 14.266 14.762 13.047 11.959 13.319 19.550 14.838 14.041 8.790 11.231 9.227 14.825
Arachne [59] 46.297 16.302 15.932 15.932 14.938 15.152 14.119 11.695 13.805 18.986 15.106 14.123 8.253 11.831 10.145 13.918
SENSEI [19] 45.824 15.270 14.870 14.390 14.664 15.052 14.191 12.112 13.917 17.250 14.943 13.602 9.117 12.902 11.277 14.772
DeepRepair [72] 46.780 17.032 15.673 15.277 14.669 15.324 13.570 12.478 13.624 18.950 15.152 14.145 9.385 13.496 11.926 14.597
ArchRepair (ours) 47.350 17.820 15.779 16.376 14.769 15.224 15.967 12.670 12.923 19.295 15.915 15.112 10.337 13.765 12.553 14.624

corruption datasets than the original DNN (i.e., the gray bar, which is lower than others in most
of the cases), indicating that repairing method will not harm the DNN’s robustness when having
fixed certain corruption patterns. Also, this fact proves that the repairing procedure will not cause
over-fit. This is also verified by the results on Tiny-ImageNet-C (see Figure 7), where repairing
on a certain corruption pattern does not affect the DNN’s robustness on clean dataset and other
corruption patterns. Instead, it can even enhance the robustness in some cases (e.g., when repairing
on Fog corruption is performed, the performance on other corruptions is also improved).

Answer to RQ2: ArchRepair can successfully fix a certain corruption pattern on a deployed
DNN (i.e., ResNet-18), outperforming the existing 4 DNN repair methods. In addition, ArchRe-

pair’s repairing doesn’t harm DNN’s robustness on clean dataset and other failure patterns.

5.3 RQ3: Is our Proposed Localization Effective in Identifying Vulnerable Block

Candidates?

To verify the effectiveness of our localization method, we conduct an experiment by applying the
repairing method on all 4 blocks of ResNet-18 and ResNet-50, and comparing the accuracy on the
clean datasets Dv of both CIFAR-10 and Tiny-ImageNet with their block suspiciousness SB (i.e.,
the number of suspicious neurons in corresponding block). We calculate the block suspiciousness
under 8 different thresholds ϵi

5 (i ∈ {10, 20, 30, 40, 50, 75, 100, 150}) to evaluate how the threshold
ϵi affects the block suspiciousness. The experimental results are summarized in Table 9.

As shown in Table 9, the block suspiciousness SB of Block 4 in ResNet-18 and Block 3 in ResNet-
50 are always the highest on both CIFAR-10 and Tiny-ImageNet datasets, no matter what value the
threshold ϵi is. It matches the performance of repaired DNNs, where the DNN repaired on Block 4
in ResNet-18 and Block 3 in ResNet-50 has the highest accuracy, respectively. This demonstrates
that our localization method can correctly locate the most vulnerable block.

It’s worth mentioning that for a simpler DNN architecture, i.e., ResNet-18, the vulnerable can-
didate block can be located more accurately when the threshold ϵi is small. As the threshold ϵi

increases, the block suspiciousness SB on other blocks becomes larger, making the localization
method difficult to identify the vulnerable block. While for ResNet-50 (a relatively complex DNN),
no matter what value the threshold ϵi is, the localization result is always significantly accurate
(with a much higher suspiciousness SB compared with other blocks).

Answer to RQ3: ArchRepair is able to locate the most vulnerable block regardless of the
settings of threshold ϵi on different DNNs’ architectures we evaluated (e.g., ResNet-18 and
ResNet-50).

5ϵi indicates top-i neurons with highest suspiciousness.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:20 H. Qi et al.

Fig. 6. Comparing the effectiveness and robustness of repairing methods on ResNet-18 by repairing the

DNNs on one of the CIFAR-10’s corruption datasetDc
i

(CIFAR-10-C) and evaluating on the other corruption

dataset {Dc
k
|Dc

k
∈ Dc, k � i}.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:21

Fig. 6. (Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:22 H. Qi et al.

Fig. 7. Comparing the effectiveness and robustness of repairing methods on ResNet-18 by repairing the

DNNs on one of the Tiny-Imagenet’s corruption datasetDc
i

(Tiny-ImageNet-C) and evaluating on the other

corruption dataset {Dc
k
|Dc

k
∈ Dc, k � i}.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:23

Fig. 7. (Continued)

5.4 RQ4: How Different Components of ArchRepair Impact Its Overall Performance?

To demonstrate the effectiveness of our ArchRepair and investigate how each component con-
tributes to its overall performance, we conduct an ablation study by repairing 4 pre-trained mod-
els (i.e., ResNet-18, ResNet-50, ResNet-101, and DenseNet-121) with two variants of our method

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:24 H. Qi et al.

Table 8. Average Robust Accuracy (%, Repeated Over 5 Runs) of 6 Different DNNs

(i.e., VGGNet-16, ResNet-18

Baseline
CIFAR-10 Tiny-ImageNet

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0 VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0

Original 64.83 70.70 72.59 72.62 74.18 76.11 16.85 17.59 18.77 18.97 19.76 20.37

MODE [45] 64.25 71.22 72.63 73.99 75.09 76.66 16.97 17.82 18.77 19.35 19.76 20.79
Apricot [74] 64.77 71.75 72.95 73.17 74.76 75.83 17.13 17.63 18.95 19.35 20.65 20.84
Arachne [59] 65.72 71.63 72.11 72.76 74.28 75.27 17.23 18.25 19.19 19.37 21.21 21.77

SENSEI [19] 66.75 72.82 73.73 73.97 75.91 76.95 17.62 18.27 19.43 20.86 21.85 22.85
Few-Shot [54] 65.57 72.54 73.15 74.25 75.22 76.83 16.93 17.99 19.53 20.53 21.67 21.97
DeepRepair [72] 67.97 73.36 74.19 75.15 76.56 77.33 18.25 19.26 20.75 21.62 22.35 23.46

ArchRepair (ours) 67.49 74.25 74.57 76.03 76.56 78.56 18.77 19.53 20.62 21.88 22.97 23.66

Baseline
CIFAR-100 ImageNet

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0 VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0

Original 32.59 33.72 34.59 35.66 36.75 37.82 27.55 28.66 29.35 30.53 31.13 33.69

MODE [45] 33.13 33.98 35.27 36.28 37.28 38.13 28.16 29.14 29.64 30.99 31.85 34.17
Apricot [74] 33.43 33.64 35.15 35.97 37.28 38.28 27.93 29.07 29.67 30.74 31.74 34.63
Arachne [59] 32.88 34.11 35.63 35.83 37.96 38.76 28.42 28.96 30.12 30.68 31.37 33.79

SENSEI [19] 33.85 34.89 36.72 36.90 38.54 40.22 28.67 29.11 30.64 31.75 32.44 34.88
Few-Shot [54] 33.67 34.67 36.72 36.83 37.44 38.25 28.45 29.32 30.59 31.33 32.75 35.09
DeepRepair [72] 34.14 35.82 37.67 37.96 39.25 40.33 29.36 29.89 31.86 32.86 33.16 35.85

ArchRepair (ours) 34.57 35.77 38.59 39.13 39.64 40.65 29.55 29.77 31.97 32.87 34.22 36.24

ResNet-50, ResNet-101, DenseNet-121, and EfficientNet-B0) repaired on 4 corruption dataset (i.e., CIFAR-10-C,

Tiny-ImageNet-C, CIFAR-100-C, and ImageNet-C) by different repairing methods.

Table 9. Block Suspiciousness SB under 8 Different Thresholds ϵi and the Accuracy of 2 DNNs (i.e.,

ResNet-18 and ResNet-50) Repaired on 4 Different Blocks

(a) Block suspiciousness and repairing accuracy on ResNet-18

CIFAR-10 Tiny-ImageNet

Acc. (%) on Dv Block Suspiciousness SB Acc. (%) on Dv Block Suspiciousness SB

ϵ10 ϵ20 ϵ30 ϵ40 ϵ50 ϵ75 ϵ100 ϵ150 ϵ10 ϵ20 ϵ30 ϵ40 ϵ50 ϵ75 ϵ100 ϵ150

Block 1 85.374 0 3 6 8 8 18 22 40 46.11 1 1 4 4 4 12 23 41
Block 2 86.377 0 0 0 1 1 2 5 16 46.29 0 1 2 2 2 6 9 16
Block 3 85.090 0 1 3 9 17 19 26 47 47.13 0 0 0 1 4 5 9 16
Block 4 88.294 10 20 21 22 24 48 48 50 47.35 9 18 24 33 40 52 60 79

(b) Block suspiciousness and repairing accuracy on ResNet-50

CIFAR-10 Tiny-ImageNet

Acc. (%) on Dv Block Suspiciousness SB Acc. (%) on Dv Block Suspiciousness SB

ϵ10 ϵ20 ϵ30 ϵ40 ϵ50 ϵ75 ϵ100 ϵ150 ϵ10 ϵ20 ϵ30 ϵ40 ϵ50 ϵ75 ϵ100 ϵ150

Block 1 82.115 1 2 2 4 4 7 7 7 45.83 0 0 0 0 0 0 0 0
Block 2 84.313 1 1 6 8 8 10 10 15 46.55 0 0 0 0 0 0 0 3
Block 3 89.576 8 18 24 32 42 58 86 139 47.82 10 20 30 40 48 67 84 119
Block 4 87.254 0 0 0 0 0 0 0 0 46.27 0 0 0 0 0 1 2 3

Obviously repairing on the block with the highest block suspiciousness has the best performance.

on both CIFAR-10 and Tiny-ImageNet datasets. Table 10 summarizes the evaluation results. The
first one performs ArchRepair on one single layer of the DNN, and we denote these variants as
“Layer-lv” in Table 10. The second one is our full (complete) version that applies ArchRepair at the
block level, we denote this variant as “Block-lv” in Table 10.

Compared with the original DNNs, the performance of “Layer-lv” is acceptable on CIFAR-10
dataset, as it slightly improves the behaviors on three DNNs (i.e., ResNet-18, ResNet-50, and
DenseNet-121) and only decreases slightly on ResNet-101. The “Block-lv” achieves better perfor-
mance on all of the four DNNs on CIFAR-10, and these results indicate that ArchRepair’s repairing
capability is effective at both levels. The performance on “Block-lv” is better than the “Layer-lv”
on all the four DNNs on two different datasets, especially on the more challenging dataset Tiny-
ImageNet, where “Layer-lv” only shows small improvement on ResNet-18 while “Block-lv” has

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:25

Table 10. Comparing the Two Variants of our Methods on four DNNs by Evaluating the Accuracy of

Repaired DNN under Testing Dataset Dt

CIFAR-10 Tiny-ImageNet

ResNet-18 ResNet-50 ResNet-101 DenseNet-121 ResNet-18 ResNet-50 ResNet-101 DenseNet-121

Original 85.00 85.17 85.72 87.97 45.15 46.27 46.14 48.73
Layer-lv 85.02 85.26 85.29 89.86 45.35 45.11 45.84 46.17
Block-lv 88.29 89.58 90.38 91.37 47.35 47.82 46.73 46.84

significant improvement on all three variants of ResNet. This demonstrates that repairing on one
specific layer cannot fully unleash ArchRepair’s potential while repairing on a block enables to
take the advantage of all components of ArchRepair . Note that even though both “Block-lv” and
“Layer-lv” fail to repair DenseNet-121 on Tiny-ImageNet (as well as all the SOTA baseline methods,
see evaluation results in Table 5), “Block-lv” still performs better than “Layer-lv”.

Answer to RQ4: Block-level repairing is more effective than layer-level one towards fully
releasing ArchRepair’s repairing capability. In addition, adjusting the network’s architecture
and weights simultaneously is more effective than only adjusting the weights, especially for
block-level repairing, demonstrating that jointly repairing the block architecture and weights
is a promising research direction for DNN repair.

5.5 Threat to Validity

The threats to the validity of this article could come from the following aspects: (1) The selected
dataset and the used model architectures could be a threat. To mitigate this, we selected popular
datasets as well as diverse architectures to evaluate our method. (2) The selection of the corruption
dataset could be biased, i.e., our method and results may not generalize well on other corruptions.
To counteract this, we tried our best and selected as many as 15 diverse and commonly used nat-
ural corruptions in the standard benchmarks of previous work [26]. (3) Another threat is from
the implementation of our method as well as the usage of the existing baselines. To mitigate the
threat, we carefully follow the configuration as stated in the original articles or implementation,
respectively. Moreover, our co-authors carefully test and review our code and the configuration of
other tools. Furthermore, to be comprehensive for better understanding the position of ArchRepair ,
we perform a large-scale comparative study against 6 SOTA DNN repair techniques. The results
confirm DNN repair could be even more promising and there are still opportunities ahead when
going beyond focusing on repairing DNN weights only.

6 RELATED WORK

6.1 DNN Testing

DNN testing is an important and relevant technique to DNN repair, aiming to detect potential
buggy issues of a DNN. Some recent work focuses on testing criteria design. For example, Deep-
Xplore [49] proposes the neuron coverage based on the number of activated neurons on given
testing data, where the neuron coverage represents the adequacy of the testing data. Similarly,
DeepGauge [43] proposes multi-granularity testing criteria, which are based on the analysis of
neural behaviors. DeepCT [42] considers the interactions between the different neurons, and fur-
ther Kim et al. [31] propose the coverage criteria to measure the surprise of the inputs based on
the neuron features at the layer level. Some researchers [24, 56] recently also point out that the
neuron coverage might fail if most of the neurons are activated by a few test cases, and further
in-depth research is still needed along this line.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:26 H. Qi et al.

Overall, these testing criteria lay the early foundation for testing generation techniques to detect
defects in DNNs. DeepTest [64] generates test cases based on the guidance of neuron coverage. Ten-
sorFuzz [48] proposes a distance-based coverage-guided fuzzing technique to test DNNs. Similarly,
DeepHunter [69] proposes another coverage-guided testing technique by integrating the coverage
criteria from DeepGauge. Readers can also see [44]. DeepStellar [13] employs the coverage crite-
ria and fuzzing technique, to test and analyze the recurrent neural network. More discussions on
the progress of machine learning testing can be referred to the recent survey [41, 75]. Different
from these testing techniques, our work mainly focuses on repairing DNNs and enhancing their ro-
bustness and generalization capability, which can be considered as the downstream tasks of DNN
testing.

6.2 Fault Localization on Deep Neuron Network

Fault localization aims to locate the root causes of software failures. Similar approaches have been
widely studied for traditional software, which focuses on developing faults identification methods
such as spectral-based [1, 29, 34, 35, 46, 50, 76], model-based [4, 55], slice-based [2], and semantic
fault localization [10]. Several works recently introduce fault localization on DNNs to find vulner-
able neurons and repair their weights. Representative techniques include sensitivity-based fault
localization [59] and spectrum-based fault localization [14]. Eniser et al. [14] try to identify sus-
picious neurons responsible for unsatisfactory DNN performance, which is an early attempt to
introduce fault localization techniques on DNNs with promising results. However, these methods
only consider a fixed DNN architecture and neuron-aware buggy behaviors, which is less flexible
for real-world applications. Our work repairs DNN at a higher level (i.e., block level) by localizing
the vulnerable block and jointly repairing the block architecture and weights, which is novel and
has not been investigated in previous work.

6.3 DNN Repair

So far, there are several attempts for repairing DNN models. Inspired by software debugging, Ma
et al. [45] propose a novel model debugging technique for neural network models, which is denoted
as MODE. MODE first performs state differential analysis on hidden layers to identify the faulty
neurons that are responsible for the misclassification. Then, an input selection algorithm is used
to select new input samples to retrain the faulty neurons.

Zhang et al. [74] propose a weight-adjustment approach named Apricot to fix the DNN. Apricot
first generates a set of reduced DNNs from the original model and trains them with a random
subset of the original training dataset, respectively. For each failure example, Apricot separates
reduced DNN models into two partitions, one successfully predicts the label and the other does
not, and takes the mean of the corresponding weight assignments of two partitions. After that,
Apricot automatically adjusts the weight with these mean values. Further, Sohn et al. [59] propose a
search-based repair technique for DNNs, called Arachne. Unlike other techniques, Arachne directly
manipulates the neuron weights without retraining. Arachne first uses positive and negative input
data to retain correct behavior and generate a patch, respectively. Then uses Particle Swarm

Optimization (PSO) to search and locate faulty neurons, and uses the result of PSO candidate to
update neurons’ weights, and further calculates fitness value based on the outcomes.

Recently, Gao et al. [19] have proposed a new algorithm called SENSEI, which uses guided
test generation techniques to address the data augmentation problem for robust generalization
of DNNs under natural environmental variations. Firstly, SENSEI uses a genetic search on a space
of the natural environmental variants of each training input data to identify the worst variant for
augmentation on each epoch. Besides, SENSEI uses a heuristic technique named selective augmen-
tation, which allows skipping augmentation in certain epochs based on an analysis of the DNN’s

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:27

current robustness. Ren et al. [54] uses Gaussian mixture model (GMM) to estimate the noise
distribution and guide the data augmentation process for DNN repairing. It first applies GMM on
collected failure data. Then the estimated GMM samples augment weights to mix the augmented
data and generate a set for repairing. Another recent attempt for DNN repair is DeepRepair [72],
a method that repairs the DNN on the image classification task. DeepRepair uses a style-guided
data augmentation for DNN repairing to introduce the unknown failure patterns into the train-
ing data to retrain the model and applies clustering-based failure data generation to improve the
effectiveness of data augmentation. NeuRecover [65] uses the history of training process to deter-
mine which DNN parameters should be corrected and corrects it through the use of particle swarm
optimization. Nakagawa et al. [47] address the difficulty of repairing DNN by first searching for
correction proposals for each different type of recognition error and performing the correction
of “suspicious parameters”. DistrRep [5] first searches for the best fix for each different misclas-
sification, then combines these fixes into a single repaired DNN model according to their risk
levels. Kim et al. [32] make one of the earliest attempts on repairing neural network architectures
through proposing a benchmark on both real and artificial DNN architecture faults with different
hyperparameter optimization methods. Our work differs from them in two ways: (1) our repair-
ing method replaces the faulty neural network blocks instead of only tuning hyperparameters, (2)
our work could repair DNNs’ performance against corrupted data in the operational environment,
with potentially both the weights and architecture of DNN enhanced.

Our repairing method is orthogonal to existing data augmentation-based methods such as SEN-
SEI [19] and DeepRepair [72], where we focus on repairing DNN from the architecture and weight
perspective. Our method also goes one step further beyond the weight level (e.g., MODE [45],
Apricot [74], and Arachne [59]), and considers at a higher granularity by jointly repairing archi-
tecture and weights at the block level, which is demonstrated to be a promising direction for DNN
repairing.

Note that, the field of DNN repairing has been progressing very fast, with some concurrent work
proposed during the enhancement of our work. We would continuously update our supplementary
website [52] to keep the relevant techniques of DNN repairing updated, and hopefully provide a
basis to ease further research in this direction.

6.4 Neural Architecture Search

Neural architecture search (NAS) could be another relevant line of our work, aiming to au-
tomatically design an architecture instead of handcrafting one. Typical NAS includes evolution-
based [53, 68], and reinforcement-learning-based [3] methods. However, the resources RL or
evolution-based methods leveraged are often very expensive and still unaffordable in practice.
More recently, DARTS [39] relaxes the search space to make it continuous so that the search pro-
cesses can be performed based on the gradient. Differentiable NAS approaches can significantly
reduce computational costs. Our search method is based on PC-DARTS [70], a stability-improved
variant of DARTS by introducing a partially connected mechanism.

The purpose of repairing and NAS is very different. The former intends to fix the buggy be-
haviors that follow some patterns with generalization capability, while NAS is to design general
architecture automatically for better performance (e.g., energy efficiency). In this article, we formu-
late the block-level joint architecture and weight repairing as a NAS problem, which demonstrates
the possibilities and chances for DNN repair along this direction.

7 CONCLUSION

In this work, we have proposed ArchRepair , an architecture-oriented DNN repair at block level,
which offers a good tradeoff between repaired network accuracy and time consumption, compared

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

129:28 H. Qi et al.

to neuron-level, layer-level, and network-level (data augmentation) repairing. To achieve this, two
key problems are identified and solved sequentially, i.e., block localization, joint architecture, and

weights repairing. By jointly repairing both architecture and weights on the candidate block for
repairing, ArchRepair is able to achieve competitive performance compared with 6 SOTA tech-
niques. Our extensive evaluation has also demonstrated that ArchRepair could not only enhance
the accuracy but also the robustness across various corruption patterns while being cost-effective.
To the best of our knowledge, this work is among the very early attempt at DNN repair by consid-
ering adjusting both the architecture and weights at the “block-level”. Our research also initiates a
promising direction for further DNN repair research, toward addressing the current urgent indus-
trial demands for reliable and trustworthy DNN deployment in diverse real-world environments.

REFERENCES

[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009. A practical evaluation of spectrum-

based fault localization. Journal of Systems and Software 82, 11 (2009), 1780–1792. DOI:https://doi.org/10.1016/j.jss.

2009.06.035

[2] Elton Alves, Milos Gligoric, Vilas Jagannath, and Marcelo d’Amorim. 2011. Fault-localization using dynamic slicing

and change impact analysis. In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software

Engineering. 520–523. DOI:https://doi.org/10.1109/ASE.2011.6100114 ISSN: 1938-4300.

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing neural network architectures using

reinforcement learning. International Conference on Learning Representations.

[4] Geoff Birch, Bernd Fischer, and Michael Poppleton. 2019. Fast test suite-driven model-based fault localisation with ap-

plication to pinpointing defects in student programs. Software and Systems Modeling 18, 1 (2019), 445–471. DOI:https://

doi.org/10.1007/s10270-017-0612-y

[5] Davide Li Calsi, Matias Duran, Xiao-Yi Zhang, Paolo Arcaini, and Fuyuki Ishikawa. 2023. Distributed repair of

deep neural networks. In Proceedings of the 16th IEEE International Conference on Software Testing, Verification and

Validation.

[6] Yun Chen, Frieda Rong, Shivam Duggal, Shenlong Wang, Xinchen Yan, Sivabalan Manivasagam, Shangjie Xue, Ersin

Yumer, and Raquel Urtasun. 2021. GeoSim: Realistic video simulation via geometry-aware composition for self-driving.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7230–7240.

[7] Yupeng Cheng, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Shang-Wei Lin, Weisi Lin, Wei Feng, and Yang Liu. 2021.

Pasadena: Perceptually aware and stealthy adversarial denoise attack. IEEE Transactions on Multimedia 24 (2021),

3807–3822.

[8] Yupeng Cheng, Felix Juefei-Xu, Qing Guo, Huazhu Fu, Xiaofei Xie, Shang-Wei Lin, Weisi Lin, and Yang Liu. 2020.

Adversarial exposure attack on diabetic retinopathy imagery. CoRR abs/2009.09231 (2020). https://arxiv.org/abs/2009.

09231.

[9] Chiho Choi, Joon Hee Choi, Jiachen Li, and Srikanth Malla. 2021. Shared cross-modal trajectory prediction for au-

tonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 244–253.

[10] Maria Christakis, Matthias Heizmann, Muhammad Numair Mansur, Christian Schilling, and Valentin Wüstholz. 2019.

Semantic fault localization and suspiciousness ranking. In Proceedings of the Tools and Algorithms for the Construc-

tion and Analysis of Systems. Tomáš Vojnar and Lijun Zhang (Eds.), Lecture Notes in Computer Science, Springer

International Publishing, Cham, 226–243. DOI:https://doi.org/10.1007/978-3-030-17462-0_13

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image

database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255. DOI:https://

doi.org/10.1109/CVPR.2009.5206848

[12] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and Cristian Canton Ferrer. 2020.

The deepfake detection challenge dataset. arXiv e-prints (2020), arXiv–2006.

[13] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. DeepStellar: Model-based quantitative

analysis of stateful deep learning systems. In Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. Association for Computing Ma-

chinery, New York, 477–487. DOI:https://doi.org/10.1145/3338906.3338954

[14] Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. 2019. DeepFault: Fault localization for deep neural networks.

In Proceedings of the Fundamental Approaches to Software Engineering. Reiner Hähnle and Wil van der Aalst (Eds.),

Springer International Publishing, Cham, v.

[15] Deng-Ping Fan, Tao Zhou, Ge-Peng Ji, Yi Zhou, Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao. 2020. Inf-net:

Automatic covid-19 lung infection segmentation from ct images. IEEE Transactions on Medical Imaging 39, 8 (2020),

2626–2637.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1109/ASE.2011.6100114
https://doi.org/10.1007/s10270-017-0612-y
https://arxiv.org/abs/2009.09231
https://doi.org/10.1007/978-3-030-17462-0_13
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3338906.3338954

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:29

[16] Ruijun Gao, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Xuhong Ren, and Wei Feng. 2021. AdvHaze: Adversarial haze

attack. CoRR abs/2104.13673 (2021). https://arxiv.org/abs/2104.13673.

[17] Ruijun Gao, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Xuhong Ren, Wei Feng, and Song Wang. 2020. Making images

undiscoverable from co-saliency detection. CoRR abs/2009.09258 (2020). https://arxiv.org/abs/2009.09258.

[18] Ruijun Gao, Qing Guo, Qian Zhang, Felix Juefei-Xu, Hongkai Yu, and Wei Feng. 2021. Adversarial relighting against

face recognition. CoRR abs/2108.07920 (2021). https://arxiv.org/abs/2108.07920.

[19] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. 2020. Fuzz testing based data augmentation

to improve robustness of deep neural networks. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-

ware Engineering. Association for Computing Machinery, New York, 1147–1158. DOI:https://doi.org/10.1145/3377811.

3380415

[20] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic software repair: A survey. IEEE Transactions

on Software Engineering 45, 1 (2017), 34–67.

[21] Qing Guo, Ziyi Cheng, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Yang Liu, and Jianjun Zhao. 2021. Learning to adversarially

blur visual object tracking. In Proceedings of the IEEE International Conference on Computer Vision. IEEE.

[22] Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Jian Wang, Bing Yu, Wei Feng, and Yang Liu. 2020. Watch out! motion

is blurring the vision of your deep neural networks. In Proceedings of the Advances in Neural Information Processing

Systems.

[23] Qing Guo, Xiaofei Xie, Felix Juefei-Xu, Lei Ma, Zhongguo Li, Wanli Xue, Wei Feng, and Yang Liu. 2020. SPARK: Spatial-

aware Online incremental attack against visual tracking. In Proceedings of the European Conference on Computer Vision.

[24] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and Miryung Kim. 2020. Is neuron

coverage a meaningful measure for testing deep neural networks?. In Proceedings of the 28th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM.

[25] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the 2016

IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Los Alamitos, CA, 770–778.

DOI:https://doi.org/10.1109/CVPR.2016.90

[26] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural network robustness to common corruptions and

perturbations. Proceedings of the International Conference on Learning Representations (2019).

[27] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. 2017. Densely connected convolutional

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[28] Yihao Huang, Felix Juefei-Xu, Qing Guo, Weikai Miao, Yang Liu, and Geguang Pu. 2021. AdvBokeh: Learning to

adversarially defocus blur. CoRR abs/2111.12971 (2021). https://arxiv.org/abs/2111.12971.

[29] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization tech-

nique. In Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering. Association

for Computing Machinery, New York, 273–282. DOI:https://doi.org/10.1145/1101908.1101949

[30] Felix Juefei-Xu, Run Wang, Yihao Huang, Qing Guo, Lei Ma, and Yang Liu. 2022. Countering malicious deepfakes:

Survey, battleground, and horizon, Vol. 130. Kluwer Academic Publishers, 1678–1734. https://doi.org/10.1007/s11263-

022-01606-8

[31] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In Pro-

ceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering. IEEE, 1039–1049.

[32] Jinhan Kim, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella, and Shin Yoo. 2023. Repairing DNN architec-

ture: Are we there yet?. In Proceedings of the 16th IEEE International Conference on Software Testing, Verification and

Validation.

[33] Alex Krizhevsky, Geoffrey Hinton and others. 2009. Learning Multiple Layers of Features from Tiny Images. University

of Toronto, ON.

[34] David Landsberg, Hana Chockler, Daniel Kroening, and Matt Lewis. 2015. Evaluation of measures for statistical

fault localisation and an optimising scheme. In Proceedings of the Fundamental Approaches to Software Engineering.

Alexander Egyed and Ina Schaefer (Eds.), Lecture Notes in Computer Science, Springer, Berlin, 115–129. DOI:https://

doi.org/10.1007/978-3-662-46675-9_8

[35] David Landsberg, Youcheng Sun, and Daniel Kroening. 2018. Optimising spectrum based fault localisation for single

fault programs using specifications. In Proceedings of the Fundamental Approaches to Software Engineering. Alessandra

Russo and Andy Schürr (Eds.), Lecture Notes in Computer Science, Springer International Publishing, Cham, 246–263.

DOI:https://doi.org/10.1007/978-3-319-89363-1_14

[36] Ya Le and X. Yang. 2015. Tiny imagenet visual recognition challenge. In Proceedings of the Stanford CS 231N.

[37] Yiming Li, Congcong Wen, Felix Juefei-Xu, and Chen Feng. 2021. Fooling LiDAR perception via adversarial trajectory

perturbation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

[38] Yiming Li, Congcong Wen, Felix Juefei-Xu, and Chen Feng. 2021. Fooling LiDAR perception via adversarial trajectory

perturbation. In Proceedings of the IEEE International Conference on Computer Vision. IEEE.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

https://arxiv.org/abs/2104.13673
https://arxiv.org/abs/2009.09258
https://arxiv.org/abs/2108.07920
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2111.12971
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1007/s11263-022-01606-8
https://doi.org/10.1007/978-3-662-46675-9_8
https://doi.org/10.1007/978-3-319-89363-1_14

129:30 H. Qi et al.

[39] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable architecture search. arXiv preprint

arXiv:1806.09055 (2018).

[40] Chenxu Luo, Xiaodong Yang, and Alan Yuille. 2021. Self-supervised pillar motion learning for autonomous driving.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3183–3192.

[41] Lei Ma, Felix Juefei-Xu, Minhui Xue, Qiang Hu, Sen Chen, Bo Li, Yang Liu, Jianjun Zhao, Jianxiong Yin, and Simon

See. 2018. Secure deep learning engineering: A software quality assurance perspective. arXiv:1810.04538. Retrieved

from https://arxiv.org/abs/1810.04538.

[42] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019. Deepct: Tomographic combinatorial

testing for deep learning systems. In Proceeding of the 2019 IEEE 26th International Conference on Software Analysis,

Evolution and Reengineering. IEEE, 614–618.

[43] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, et al.

2018. Deepgauge: Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. 120–131.

[44] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, and

Yadong Wang. 2018. Deepmutation: Mutation testing of deep learning systems. In Proceedings of the 2018 IEEE 29th

International Symposium on Software Reliability Engineering. IEEE, 100–111.

[45] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2018. MODE: Automated neural net-

work model debugging via state differential analysis and input selection. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.

175–186.

[46] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-based software diagnosis. ACM

Transactions on Software Engineering and Methodology 20, 3 (2011), 11:1–11:32. DOI:https://doi.org/10.1145/2000791.

2000795

[47] Takao Nakagawa, Susumu Tokumoto, Shogo Tokui, and Fuyuki Ishikawa. 2023. An experience report on regression-

free repair of deep neural network model. In Proceedings of the 30th IEEE International Conference on Software Analysis,

Evolution and Reengineering.

[48] Augustus Odena and Ian Goodfellow. 2019. TensorFuzz: Debugging neural networks with coverage-guided fuzzing.

In Proceedings of the 36th International Conference on Machine Learning.

[49] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning

systems. In Proceedings of the 26th Symposium on Operating Systems Principles. 1–18.

[50] Alexandre Perez, Rui Abreu, and Arie van Deursen. 2017. A test-suite diagnosability metric for spectrum-based fault

localization approaches. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering.

654–664. DOI:https://doi.org/10.1109/ICSE.2017.66 ISSN: 1558-1225.

[51] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. 2021. Multi-modal fusion transformer for end-to-end au-

tonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7077–7087.

[52] Hua Qi, Zhijie Wang, Qing Guo, Jianlang Chen, Felix Juefei-Xu, Fuyuan Zhang, Lei Ma, and Jianjun Zhao. 2023.

Supplementary Website: Retrieved from https://sites.google.com/view/archrepair. Accessed Mar 30, 2023.

[53] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regularized evolution for image classifier archi-

tecture search. Proceedings of the 33rd AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applica-

tions of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence

(AAAI’19/IAAI’19/EAAI’19, Honolulu, Hawaii, USA). AAAI Press. https://doi.org/10.1609/aaai.v33i01.33014780

[54] Xuhong Ren, Bing Yu, Hua Qi, Felix Juefei-Xu, Zhuo Li, Wanli Xue, Lei Ma, and Jianjun Zhao. 2020. Few-shot guided

mix for DNN repairing. In Proceedings of the 2020 IEEE International Conference on Software Maintenance and Evolution.

717–721. DOI:https://doi.org/10.1109/ICSME46990.2020.00079

[55] Erickson H. da S. Alves, Lucas C. Cordeiro, and Eddie B. de L. Filho. 2017. A method to localize faults in concurrent C

programs. Journal of Systems and Software 132 (2017), 336–352. DOI:https://doi.org/10.1016/j.jss.2017.03.010

[56] Jasmine Sekhon and Cody Fleming. 2019. Towards improved testing for deep learning. In Proceedings of the 2019

IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results. IEEE, 85–88.

[57] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.

In Proceedings of the 3rd International Conference on Learning Representations. Yoshua Bengio and Yann LeCun (Eds.).

[58] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.

In Proceedings of the 3rd International Conference on Learning Representations. Yoshua Bengio and Yann LeCun (Eds.),

http://arxiv.org/abs/1409.1556.

[59] Jeongju Sohn, Sungmin Kang, and Shin Yoo. 2019. Search based repair of deep neural networks. arXiv:1912.12463.

Retrieved from https://arxiv.org/abs/1912.12463.

[60] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. Proceed-

ings of the 36th International Conference on Machine Learning, Kamalika Chaudhuri and Ruslan Salakhutdinov, Vol. 97.

PMLR, 6105–6114. http://proceedings.mlr.press/v97/tan19a/tan19a.pdf.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

https://arxiv.org/abs/1810.04538
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/ICSE.2017.66
https://sites.google.com/view/archrepair
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1109/ICSME46990.2020.00079
https://doi.org/10.1016/j.jss.2017.03.010
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1912.12463
http://proceedings.mlr.press/v97/tan19a/tan19a.pdf

ArchRepair : Block-Level Architecture-Oriented Repairing for Deep Neural Networks 129:31

[61] Binyu Tian, Qing Guo, Felix Juefei-Xu, Wen Le Chan, Yupeng Cheng, Xiaohong Li, Xiaofei Xie, and Shengchao Qin.

2021. Bias field poses a threat to DNN-based x-ray recognition. In Proceedings of the IEEE International Conference on

Multimedia and Expo.

[62] Binyu Tian, Felix Juefei-Xu, Qing Guo, Xiaofei Xie, Xiaohong Li, and Yang Liu. 2021. AVA: Adversarial vignetting

attack against visual recognition. In Proceedings of the International Joint Conference on Artificial Intelligence.

[63] Yuchi Tian. 2020. Repairing confusion and bias errors for DNN-based image classifiers. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.

1699–1700.

[64] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated testing of deep-neural-network-

driven autonomous cars. In Proceedings of the 40th International Conference on Software Engineering. 303–314.

[65] S. Tokui, S. Tokumoto, A. Yoshii, F. Ishikawa, T. Nakagawa, K. Munakata, and S. Kikuchi. 2022. NeuRecover: Regression-

controlled repair of deep neural networks with training history. In Proceedings of the 2022 IEEE International Conference

on Software Analysis, Evolution and Reengineering. IEEE Computer Society, 1111–1121. DOI:https://doi.org/10.1109/

SANER53432.2022.00128

[66] Jingkang Wang, Ava Pun, James Tu, Sivabalan Manivasagam, Abbas Sadat, Sergio Casas, Mengye Ren, and Raquel

Urtasun. 2021. AdvSim: Generating safety-critical scenarios for self-driving vehicles. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 9909–9918.

[67] Run Wang, Felix Juefei-Xu, Qing Guo, Yihao Huang, Xiaofei Xie, Lei Ma, and Yang Liu. 2020. Amora: Black-box

adversarial morphing attack. In Proceedings of the ACM International Conference on Multimedia.

[68] Lingxi Xie and Alan Yuille. 2017. Genetic CNN. IEEE International Conference on Computer Vision (ICCV’17). IEEE

Computer Society, Los Alamitos, CA, 1388–1397. https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.154

[69] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and

Simon See. 2019. Deephunter: A coverage-guided fuzz testing framework for deep neural networks. In Proceedings of

the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 146–157.

[70] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. 2020. PC-DARTS: Partial

channel connections for memory-efficient architecture search. International Conference on Learning Representations.

https://openreview.net/forum?id=BJlS634tPr.

Jason Yim, Reena Chopra, Terry Spitz, Jim Winkens, Annette Obika, Christopher Kelly, Harry Askham, Marko Lukic,

Josef Huemer, Katrin Fasler, Gabriella Moraes, Clemens Meyer, Marc Wilson, Jonathan Dixon, Cian Hughes, Geraint

Rees, Peng T. Khaw, Alan Karthikesalingam, Dominic King, Demis Hassabis, Mustafa Suleyman, Trevor Back, Joseph

R. Ledsam, Pearse A. Keane and Jeffrey De Fauw.

[71] Jason Yim, Reena Chopra, Terry Spitz, Jim Winkens, Annette Obika, Christopher Kelly, Harry Askham, Marko Lukic,

Josef Huemer, Katrin Fasler, Gabriella Moraes, Clemens Meyer, Marc Wilson, Jonathan Dixon, Cian Hughes, Geraint

Rees, Peng T. Khaw, Alan Karthikesalingam, Dominic King, Demis Hassabis, Mustafa Suleyman, Trevor Back, Joseph

R. Ledsam, Pearse A. Keane, and Jeffrey De Fauw. 2020. Predicting conversion to wet age-related macular degeneration

using deep learning. Nature Medicine 26, 6 (2020), 892–899.

[72] Bing Yu, Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, and Jianjun Zhao. 2021. DeepRepair: Style-guided

repairing for deep neural networks in the real-world operational environment. IEEE Transactions on Reliability 71, 4

(2021), 1–16. DOI:https://doi.org/10.1109/TR.2021.3096332

[73] Liming Zhai, Felix Juefei-Xu, Qing Guo, Xiaofei Xie, Lei Ma, Wei Feng, Shengchao Qin, and Yang Liu. 2020. Adversarial

rain attack and defensive deraining for DNN perception. arXiv preprint arXiv:2009.09205 (2022).

[74] Hao Zhang and W. K. Chan. 2019. Apricot: A weight-adaptation approach to fixing deep learning models. In Proceed-

ings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering. 376–387. DOI:https://

doi.org/10.1109/ASE.2019.00043

[75] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. 2020. Machine learning testing: Survey, landscapes and horizons. IEEE

Transactions on Software Engineering 48, 1 (2020), 1–36.

[76] Long Zhang, Lanfei Yan, Zhenyu Zhang, Jian Zhang, W. K. Chan, and Zheng Zheng. 2017. A theoretical analysis on

cloning the failed test cases to improve spectrum-based fault localization. Journal of Systems and Software 129 (2017),

35–57. DOI:https://doi.org/10.1016/j.jss.2017.04.017

Received 25 November 2021; revised 12 December 2022; accepted 28 January 2023

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 5, Article 129. Pub. date: July 2023.

https://doi.org/10.1109/SANER53432.2022.00128
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.154
https://openreview.net/forum?id=BJlS634tPr
https://doi.org/10.1109/TR.2021.3096332
https://doi.org/10.1109/ASE.2019.00043
https://doi.org/10.1016/j.jss.2017.04.017

