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ABSTRACT

Multi-sensor fusion stands as a pivotal technique in addressing
numerous safety-critical tasks and applications, e.g., self-driving
cars and automated robotic arms. With the continuous advance-
ment in data-driven artificial intelligence (AI), MSF’s potential for
sensing and understanding intricate external environments has
been further amplified, bringing a profound impact on intelligent
systems and specifically on their perception systems. Similar to tra-
ditional software, adequate testing is also required for AI-enabled
MSF systems. Yet, existing testing methods primarily concentrate
on single-sensor perception systems (e.g., image-based and point
cloud-based object detection systems). There remains a lack of
emphasis on generating multi-modal test cases for MSF systems.

To address these limitations, we design and implementMulti-
Test, a fitness-guided metamorphic testing method for complex
MSF perception systems. MultiTest employs a physical-aware
approach to synthesize realistic multi-modal object instances and
insert them into critical positions of background images and point
clouds. A fitness metric is designed to guide and boost the test gen-
eration process. We conduct extensive experiments with five SOTA
perception systems to evaluateMultiTest from the perspectives of:
(1) generated test cases’ realism, (2) fault detection capabilities, and
(3) performance improvement. The results show thatMultiTest
can generate realistic and modality-consistent test data and effec-
tively detect hundreds of diverse faults of an MSF system under test.
Moreover, retraining an MSF system on the test cases generated by
MultiTest can improve the system’s robustness. Our replication
package and synthesized testing dataset are publicly available at
https://sites.google.com/view/msftest.
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1 INTRODUCTION

Multi-sensor fusion (MSF) plays a vital role in various intelligent
machines and software systems. The recent rapid advancements
in data-driven artificial intelligence (AI) and sensor technologies
further propelled progress in the development of MSF-based sys-
tems. Nowadays, prominent industrial-level systems, such as Open-
Pilot [9], commonly rely on multi-sensor fusion strategies to over-
come the inherent limitations of individual sensors and enhance
overall system performance [17]. Consequently, MSF-based percep-
tion systems have found widespread applications in diverse indus-
trial domains and safety-critical use cases, including self-driving
cars [10], unmanned aerial vehicles [24], and robotic systems [13].

Despite the rapid progress, AI-enabled perception systems, simi-
lar to any traditional software, can still yield incorrect prediction
results, which can further lead to incorrect system behavior. Of-
tentimes the incorrect behavior could result in severe accidents
and losses in safety-critical contexts, e.g., autonomous driving. For
instance, a Tesla self-driving car failed to distinguish a white truck
against a bright sky [12], causing a fatal collision.

To improve the overall quality of AI-enabled perception sys-
tems, software engineering and machine learning researchers have
proposed a few quality assurance techniques for the different de-
velopment stages, e.g., testing [8, 23, 52, 55] and debugging [29, 30].
Among these approaches, testing has emerged as a proven and
efficient method to assess the potential risks of deploying an AI-
enabled perception system in real-world scenarios. A typical testing
workflow takes a small set of tests (e.g., images) as seeds and gen-
erates more challenging test cases based on seeds. Existing testing
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techniques for AI-enabled perception systems usually leverage nat-
ural/adversarial perturbations to synthesize new test data [23, 55].
However, they mostly focus on testing single-sensor (e.g., camera
or LiDAR) perception systems. Yet, little has been done from the
perspective of testing MSF-based systems [21]. A systematic survey
from practitioners in autonomous driving shows that there comes
an urgent need for multi-modal data synthesis techniques [35].

We argue two critical challenges exist in the field of testing MSF-
based perception systems. Firstly, compared with the testing of
single-sensor perception systems, testing MSF-based perception
systems would require the synthesis of modality-consistent tests
across different sensors (e.g., a car appears in an image should have
the same pose in the corresponding point cloud). Therefore, a mere
combination of image-based and point cloud-based testing meth-
ods cannot guarantee such consistency. To address this challenge,
Gao et al. collected a set of perturbations that can be leveraged for
testing MSF systems [21]. However, the testing efficiency is highly
limited due to a lack of proper guidance when generating test cases.
Another challenge comes from the realism of synthesized test cases.
For perception systems operating in the physical world, the realism
of test cases directly impacts the value of detected errors. Some
existing perturbations used in testing, such as adversarial noises,
seldom occur in real-world environments. Moreover, simple per-
turbations also limit the diversity of test generation from different
perspectives (changing the number of cars and pedestrians, etc.).
To address this, Wang et al. proposed an object insertion method
for testing image-based object detectors [52]. However, without ap-
propriate physical constraints, the inserted object might appear in
invalid positions (e.g., a car hanging in the air) or result in incorrect
perspective relationships (e.g., an occluded but visible building).

To address these issues, we proposeMultiTest, an automated
testingmethod forMSF-based perception systems based on physical-
aware multi-modal object insertion. Given a multi-modal test seed
(i.e., a pair of image and point cloud frames), MultiTest automat-
ically selects a 3D object instance (e.g., a car) from database then
inserts it into the original data. To generate semantically plausible
test data (i.e., the newly inserted car is on the road with correct
heading),MultiTest first searches for valid poses of the inserted
object. Then, MultiTest synthesizes realistic images and point
cloud frames to handle the occlusion between the inserted object
and the background data. Finally,MultiTest leverages a fitness-
guided approach to insert the object for the purpose of synthesizing
more challenging test cases for systems under test. MultiTest
further employs metamorphic relations between the synthesized
data and seed data to automatically detect faulty perception results.
MultiTest can generate modality-consistent and realistic tests
from the seed testing data with physical-aware virtual sensors.

To evaluate the effectiveness and efficiency of MultiTest, we
conduct experiments on three popular MSF-based object detection
systems. We further experimentMultiTestwith two single-sensor
object detection systems (camera-only and LiDAR-only) to evaluate
the generalization ability of MultiTest. We find thatMultiTest
is capable of generating realistic and modality-consistent test data
to satisfy test input specifications for both single-sensor and MSF-
based perception systems. The experimental results also demon-
strate thatMultiTest can effectively detect hundreds of erroneous
behavior across differentMSF-based perception systems.We further

Figure 1: The workflow of MSF perception systems.

retrain the selected perception systems with test data generated
by MultiTest, finding that the system performance (measured by
average precision) can be improved by 24% on average.

In summary, this work makes the following contributions:
• Method. We propose an automated testing approach for MSF
perception systems based on fitness-guided metamorphic testing.
Specifically, we leverage a physical-aware approach to insert new
object instances to critical positions of the test seed to generate
realistic and modality-consistent data.
• Tool. We implement the above method into a tool Multi-
Test. To the best of our knowledge, MultiTest is the first
automated testing tool for MSF-based perception systems. We
have released MultiTest and the multi-modal data gener-
ated byMultiTest on our anonymous supplementary website:
https://sites.google.com/view/msftest.
• Evaluation.We conduct extensive experiments to evaluate the
performance of MultiTest with five perception systems. The
results show thatMultiTest can generate realistic and modality-
consistent test data and efficiently detect erroneous system be-
havior. Retraining an MSF system with the generated test cases
can significantly increase its robustness.

2 BACKGROUND

2.1 Multi-Sensor Fusion Perception Systems

Perception systems rely on sensors to capture real-world informa-
tion in a particular data format. Subsequently, they process and fuse
data from various different sensors using specific algorithms to help
an intelligent system understand the external environment [26]. As
shown in Fig. 1, perception systems are commonly integrated as a
module within intelligent software systems (e.g., a self-driving car,
a robotic, or an unmanned aerial vehicle). They are responsible for
executing specific perception tasks, such as object detection and
object tracking. The perception results are then communicated to
downstream decision modules, such as planning and control, to
facilitate the smooth operation of the entire intelligent system. As
a result, the quality and reliability of the entire system are signifi-
cantly influenced by its perception systems.

To further enhance the performance of the system,most industrial-
level systems [41] employ the multi-sensor fusion (MSF) strategy to
avoid inherent perception limitations of individual sensors, leading
to improved accuracy and reliable sensing capabilities. For example,
a camera can capture rich semantic information but is sensitive
to the environmental changes (e.g., rain and snow), while LiDAR
can provide high-quality 3D geometric information but lacks the

https://sites.google.com/view/msftest
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capability of semantic understanding. The camera-LiDAR fusion is
also highly favored among different multi-sensor configurations.

To better fuse heterogeneous data with different characteristics
and storage structure, researchers further propose AI-enabled MSF
techniques. Based on the stage of data fusion, these fusion tech-
niques can be categorized into four different mechanisms at a high
level: early fusion, late fusion, deep fusion, and weak fusion [17].
Early fusion is the fusion of raw or pre-processed sensor data,
which usually fuses heterogeneous data by converting them into
the same data type according to rules. While this fusion mechanism
has low computational and memory requirements, its inflexibility
and significant limitations have led to its infrequent standalone
use. Late fusion directly merges the output results from both the
LiDAR and the camera branch to make the final prediction. Each
branch independently processes data from sensors without relying
on specific network architecture, which makes it more flexible and
efficient.Deep fusion, on the other hand, combines hidden features
from different branches at varying depths to gain rich semantic
information. Frequent interactions between different branches en-
able the network to learn cross-modalities with diverse feature
representations.Weak fusion commonly uses rule-based methods
to transform data from an additional branch to provide guidance
for processing data in the main branch. A typical example of weak
fusion is extracting the frustums in the point cloud data using the
2D detection bounding boxes from the image as guidance.

2.2 The Preliminaries of Object Detection

Object detection is a fundamental perception task for intelligent
machines, enabling them to understand external environments. The
primary objective of object detection is to estimate bounding boxes
around objects of interest and predict their classification labels. This
task can be categorized into two types based on dimensionality: 2D
and 3D object detection. 2D object detection is typically performed
on image data. It involves estimating a bounding box for each object,
providing the object’s position as [𝑥,𝑦] and the bounding box’s
width𝑤 and height ℎ in pixels. In contrast, 3D object detection goes
beyond 2D by additionally estimating the position [𝑥,𝑦, 𝑧] of each
object in 3D space, along with the bounding box’s length 𝑙 , width
𝑤 , height ℎ, and orientation angles [𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ,𝑦𝑎𝑤]. It is worth
noting that, in the context of autonomous driving, practitioners
usually consider only the 𝑦𝑎𝑤 orientation (i.e., the heading) for
simplicity. 3D object detection can be performed on image data,
point cloud data, or a fusion of both, depending on the available
sensors and the specific application requirements.

Given different input data types (i.e., images or point clouds),
object detection systems may employ diverse model architectures
and pipelines. For image data, popular object detection systems
utilize convolutional neural networks (CNNs) as the backbone to
gather rich semantic hidden features [33, 46, 47]. Subsequently, a
head network is used to predict the bounding box’s position, size,
and the object’s classification label. Different from image data, point
cloud data includes a set of orderless 3D points. Representative
point cloud-based detection systems leverage two strategies to
obtain semantic features from the point cloud: (1) voxel-based and
(2) point-based methods. Voxel-based methods partition the point
cloud into several fixed-resolution 3D grids (voxels) and use 3D

CNNs as the backbone to extract point cloud features [57, 61]. By
contrast, point-based methods directly extract features from raw
point clouds via fully-connected networks [43, 44] or specialized
convolution operations [34] for points for 3D detection. MSF-based
object detection systems further take both these two input data
types into account. Given different fusion strategies, an MSF-based
object detection system might either extract features from each
sensor’s perception [27] or project the information captured in one
modality to another modality before extracting features [6].

The accuracy of object detection is usually measured by IOU
(intersection over union) [38] and AP (average precision) [15]. IOU
measures the overlap area between a ground-truth bounding box 𝐵𝑔
and a predicted bounding box 𝐵𝑝 over their union. The computation
of IOU can be represented as 𝐼𝑂𝑈 = area

(
𝐵𝑝 ∩ 𝐵𝑔

)
/area

(
𝐵𝑝 ∪ 𝐵𝑔

)
.

The object is successfully detected in case IOU is greater than a
given threshold 𝜏 . In this paper, we set the IOU threshold 𝜏 as 0.5,
which is consistent with the previous study [52]. AP is used to
measure the performance of the overall detection performance on
a dataset, which can be derived by computing the area under the
Precision/Recall curve as

AP|𝑅 =
1
|𝑅 |

∑︁
𝑟 ∈𝑅

𝜌interp (𝑟 ) (1)

where 𝜌interp is the interpolation function, which is defined as:
𝜌interp (𝑟 ) = max𝑟 ′ :𝑟 ′≥𝑟 ≥ (𝑟 ′), where 𝜌 (𝑟 ) gives the precision at
recall level 𝑟 . In this paper, we apply forty equally spaced recall
levels recommended by KITTI, i.e., 𝑅40 = {1/40, 2/40, . . . , 1}.

For a more in-depth evaluation of the object detection tasks,
Wang et al. [52] classified object detection errors into three cate-
gories, i.e., Recognition failures, Localization failures, and Classifica-
tion failures. Note that in this paper, we mainly focus on recognition
failures and localization failures.

Recognition failures include two independent types of errors, i.e.
Object missing and False detection. Object missing refers to the case
that an object detection system fails to recognize an existing object,
while false detection refers to the case that the system treats an
arbitrary regionwithout objects as an “object”. Given a ground-truth
bounding box 𝐵𝑔 ∈ GT and a predicted bounding box 𝐵𝑝 ∈ DT, the
object missing can be formalized as:

∃𝐵𝑔 ∈ GT ∧ ∀𝐵𝑝 ∈ DT, 𝐼𝑂𝑈 (𝐵𝑔, 𝐵𝑝 ) ≤ 0 (2)

and the false detection can be be formalized as:

∀𝐵𝑔 ∈ GT ∧ ∃𝐵𝑝 ∈ DT, 𝐼𝑂𝑈 (𝐵𝑔, 𝐵𝑝 ) ≤ 0 (3)

Localization failures refer to the errors that an estimated bounding
box is too large or too small, which can be formalized as:

∃𝐵𝑔 ∈ GT ∧ ∃𝐵𝑝 ∈ DT𝑙 , 0 < 𝐼𝑂𝑈 (𝐵𝑔, 𝐵𝑝 ) ≤ 𝜏 (4)

where DT𝑙 is detection bounding boxes with neither successful
detection nor false detection.

3 APPROACH

In this section, we introduce the design of MultiTest. Fig. 2
presents the high-level workflow of MultiTest. Given a back-
ground multi-modal data recorded from real-world and an object
instance selected from the object database, MultiTest first exe-
cutes the pose estimationmodule to calculate the valid locations and
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Figure 2: The workflow of MultiTest.

orientations of an object to be inserted. Then themulti-sensor simu-
lationmodule renders the object instance in the form of both image
and point cloud given the calculated poses in a physical-aware vir-
tual simulator. The multi-sensor simulation module further merges
the synthesized image and point cloud of the inserted object with
the background data and carefully handles the occlusion. These
two modules form theMultiTest’smulti-modal test data gen-

eration pipeline. Finally, the realistic multi-modal test data can
be efficiently generated through fitness guided metamorphic

testing. We detail each module of MultiTest in the following.

3.1 Pose Estimation

Given the background data and an object instance, the pose esti-
mation module aims to estimate possible valid locations and orien-
tations to create a plausible scene in the real world after inserting
the object. This is critical for synthesizing realistic test data for
real-world perception systems because failing to address it could
result in semantically invalid data. For instance, a synthesized test
case should be considered invalid if a car is inserted outside of the
road or if the car’s heading is incorrect (Fig. 3(c)).
Pose Generator. Given a candidate scene 𝑚 (a.k.a. a test seed,
composed by a pair of image and point cloud ⟨𝑖𝑚𝑎𝑔𝑒, 𝑝𝑐⟩) to insert
and an object 𝑜 to be inserted, MultiTest’s pose generator first
samples a set of possible positions and orientations P (𝑝𝑜𝑠𝑒_𝑖 ∈ P,
𝑝𝑜𝑠𝑒_𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑟𝑧𝑖 ] is in the LiDAR’s coordinate) in the cor-
responding 3D space. To obtain P, one critical challenge is to
split road planes from the 3D scene. State-of-the-art (SOTA) meth-
ods [32, 57] use plane segmentation algorithms (e.g., fitting plane
equations with RANSAC [19]) to obtain road planes. However,
we posit that the road planes obtained through fitting plane equa-
tions may inadvertently include non-road objects such as sidewalks,
median strips, etc. Therefore, we utilize CENet [7], a concise and
efficient point cloud semantic segmentation model, to split the road
point cloud from the background point cloud. Subsequently, we
meshify the road point cloud to reconstruct the road surface and
obtain sample insertion positions and orientations. As shown in
Fig. 3, compared to plane-equation based sampling method that is

(a) Invalid insertion with plane-
equation based sampling

(b) Valid insertion with MultiTest

(c) Zoom-in views of different invalid insertion

Figure 3: Validity of object insertion with different pose esti-

mation methods.

used in the existing testing tool [32], MultiTest can accurately
generate possible positions for object insertion, even in complicated
road conditions such as intersections.
Collision Avoidance. To avoid collision with existing objects
from the background scene𝑚, we first calculate the minimal 3D
bounding box 𝐵𝑜 of the object instance to be inserted. Then, given
a possible pose of 𝑜 , 𝑝𝑜𝑠𝑒_𝑖 , we check if the 3D box 𝐵𝑜 contains
any other objects from the background point clouds. If the IOU
between 𝐵𝑜 and the background point cloud is greater than 0, we
consider 𝑝𝑜𝑠𝑒_𝑖 as an invalid pose since it leads to a collision with
the existing objects.

3.2 Physical-Aware Multi-Sensor Simulation

One significant threat to the realism of test cases generated by the
existing methods is that the random insertion might violate the
basic laws of the physical world. For example, images captured



MultiTest: Physical-Aware Object Insertion for Testing Multi-sensor Fusion Perception Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(a) View along the y-axis (b) Top view

Figure 4: Virtual LiDAR emitting lasers to hit a car. (a) View

along the y-axis, (b) top view.

by a camera follow the basic law that objects farther away are
smaller. Similarly, point clouds recorded by LiDAR should become
sparser when the inserted object is farther away. Moreover, dif-
ferent sensor configurations could result in varying field of views
(FOVs) and sensing results. Therefore, when rendering an object
for insertion, it is critical to use the same sensor settings (camera
resolution, number of LiDAR beams, calibration files, etc.) as those
used for the background scene. Consequently, MultiTest employs
a physical-aware sensor simulation module to render images and
point clouds for the object to be inserted. We first construct a set
of virtual sensors to simulate their operating modes in the physical
world to generate modality-consistent data given their configura-
tion parameters. Then, we carefully handle the occlusion when
inserting the object 𝑜 into the candidate scene𝑚.
LiDAR Simulation. To simulate laser beams of a LiDAR sensor,
given the LiDAR horizontal field of view, vertical field of view,
the number of beams and angular resolution, we first create a set
of rays centered on the virtual LIDAR scanner to simulate each
laser beam emitted. Then we leverage the ray casting proved by
Open3D [60] to simulate laser emission on the object 𝑜 . As shown
in Fig. 4, the ray casting calculates the 3D coordinates of the first hit
point 𝑝ℎ𝑖𝑡 (𝑟, 𝜃, 𝜙) of the ray on the target surface given the starting
point 𝑙𝑜𝑐_𝑙𝑖𝑑𝑎𝑟 and direction of the ray, where 𝑟 is the distance, 𝜃 is
the polar angle and𝜙 is the azimuthal angle in spherical coordinates.
Whenever an obstacle is inserted into the scene, we execute the ray
casting to obtain the updated coordinates in the point cloud.

Considering that the point cloud data captured by a real-world
LiDAR could include inevitable noises, we randomly remove a small
portion of the point to simulate the laser which is not to be detected
by the receiver due to insufficient intensity [28]. We further add
Gaussian noise to simulate themeasurement noise of the sensor [16].
Note that the proposed virtual LiDAR can simulate any type of laser
scanner with the given LiDAR configurations, including its extrinsic
calibration, FOVs and resolutions, the number of beams, etc. We
refer readers to our supplementary website for more details.
Camera Simulation.We leverage Python API provided by Blender,
an open-source 3D computer graphics software, to build our virtual
camera sensor. We first build a virtual camera given its configu-
rations, including intrinsic and extrinsic calibration, lens length,
resolution, etc. Then, we calculate the pose of the object 𝑜 in the
camera coordinates system 𝑝𝑜𝑠_𝑐𝑎𝑚 = Tcamvelo 𝑝𝑜𝑠_𝑙𝑖 based on the
transformation matrix Tcamvelo and its corresponding position 𝑝𝑜𝑠𝑒_𝑖

in the LiDAR coordinate. Finally, we place the object 𝑜 in the posi-
tion 𝑝𝑜𝑠_𝑐𝑎𝑚 and render an image with our virtual camera. Note
that we use the minimum 2D rectangle box of the image object 𝑜 as
the ground truth bounding box for 2d object detection. To further
improve the realism of the synthesized test cases, we leverage a
model S2CRNet [31] with pre-trained weights released by the au-
thors 1 to naturally blend the object 𝑜 into the target scene𝑚 by
adjusting the color of the inserted object. Therefore, the inserted
object could have near consistent illumination and color balancing
compared with the target scene.
Occlusion Handling. When inserting an object, occlusion should
be carefully addressed. For instance, the inserted object should not
block any objects that are closer to the sensor according to the
distance to the sensor. To handle the point cloud occlusion, we
remove the point clouds that are occluded by the inserted objects
from the 3D scene according to their geometric relationships. As
shown in Fig. 4 (b), the ray emitted from the virtual laser scanner
intersects the object and divides the space into the visible region
𝑟𝑒𝑔_𝑣𝑖𝑠 and the invisible region 𝑟𝑒𝑔_𝑖𝑛𝑣𝑖𝑠 . We sequentially infer
the occlusion relation and remove the points in 𝑟𝑒𝑔_𝑣𝑖𝑠 for each
object according to their distance to the virtual LiDAR. To handle
the image occlusion, we record the distance from the center of each
object to the virtual camera and ensure the inserted object 𝑜 only
blocks the pixels that are farther than 𝑜 in the 3D space. To avoid
false positives on original objects that are occluded by the inserted
objects, we calculate an occlusion ratio for each existing object after
each round of insertion. If the occlusion ratio of an occluded object
is higher than 90%, we exclude this object from the evaluation by
labeling it as “DontCare.”

3.3 Metamorphic Relations

Manual labeling of our generated test cases could be time-consuming
and labor-extensive. To address this, we leverage metamorphic re-
lations (MRs) [5] to create test oracles. MRs describes the necessary
properties of a target software in terms of inputs and their expected
outputs [62]. The violation of MRs often indicates potential defects.

MultiTest is designed for MSF perception systems based on
metamorphic testing. Specifically, we denote the MSF perception
system as 𝑃𝑆 that detect the results with multi-model data 𝑚 ∈
M including 2D image and 3D point cloud. Given a set of object
instances O, an MR can be formalized as follows:

𝑀𝑅1 : ∀𝑜 ∈ O ∧ ∀𝑚 ∈ M, 𝜁 {𝑃𝑆⟦𝑚⟧ ∪𝐺𝑇𝑜 , 𝑃𝑆⟦𝜎 (𝑚,𝑜)⟧} (5)

where 𝜎 is the insertion operator for inserting an object instance 𝑜
into the background scene𝑚, 𝐺𝑇𝑜 is the ground truth of the object
𝑜 (i.e., the estimated bounding box in object detection task) and 𝜁
is a criterion asserting the equality of 𝑃𝑆 results.

𝑀𝑅1 is built upon the following two facts: (1) the object insertion
operator should not change the correct prediction of 𝑃𝑆 ; (2) and
the inserted object should be detected correctly. However, asserting
the equality of 𝑃𝑆 outputs is too strict and thus can lead to a large
number of false positives due to a slight drift of the detection results.
Therefore, we follow the previous work [23, 52] to leverage soft
equality criteria 𝜁 derived from Average Precision (AP). Given

1https://github.com/vinthony/S2CRNet-demos

https://github.com/vinthony/S2CRNet-demos


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xinyu Gao, Zhijie Wang, Yang Feng, Lei Ma, Zhenyu Chen, and Baowen Xu

the MR, we can simply obtain the test oracle information without
manual annotation by checking if the MR is violated.

3.4 Fitness-Guided Testing

To boost the testing efficiency of MultiTest, we propose a fitness-
guided testing process for object insertion. Thus, we can keep a test
case𝑚′ with high fault-revealing capability from the seed test𝑚.
Fitness Metric. We design a fitness metric that measures the like-
lihood of a test data to reveal errors. Our fitness metric consists
of three fault-revealing capability scores, i.e., object missing, fault
detection, and location error (introduced in Sec. 2.2).

Given a ground-truth bounding box 𝐵𝑔 ∈ GT and a predicted
bounding box 𝐵𝑝 ∈ DT, the object missing score can be expressed
as follows:

𝐹𝑂𝑀 =
∑︁

𝐵𝑔∈GT
𝐼𝑂𝑀 (𝐵𝑔, 𝐵𝑝 ) ∗

(
1 −

min(𝑑𝑖𝑠 (𝐵𝑔), 𝑑𝑖𝑠_𝑚𝑎𝑥)
𝑑𝑖𝑠_𝑚𝑎𝑥

)
(6)

where 𝑑𝑖𝑠 calculates the distance between a bounding box 𝐵 and
the LiDAR position, 𝑑𝑖𝑠_𝑚𝑎𝑥 is the max recognition distance of
LiDAR, and 𝐼𝑂𝑀 (·) is an indicator function equal to 1 if and only if
it is an object missing error. The intuition behind the score is that
the close object missing failure could lead to serious consequences,
such as collisions.

The fault detection score can be expressed as follows:

𝐹𝐹𝐷 =
∑︁

𝐵𝑝 ∈DT
𝐼𝐹𝐷 (𝐵𝑔, 𝐵𝑝 ) ∗

(
1 −

min(𝑑𝑖𝑠 (𝐵𝑝 ), 𝑑𝑖𝑠_𝑚𝑎𝑥)
𝑑𝑖𝑠_𝑚𝑎𝑥

)
∗ 𝑝𝑟𝑜𝑏𝑝

(7)
where 𝑝𝑟𝑜𝑏𝑝 is the confidence probability of the detection, and
𝐼𝐹𝐷 (·) is an indicator function equal to 1 if and only if it is a false
detection error. Similarly, a close and high-confidence fault detec-
tion might lead to wrong control decisions, e.g., emergency braking.

Then, we compute location error scores if and only if it is neither
missing detection nor fault detection. Let GT𝑟 = {𝐵𝑔 |𝐼𝑂𝑀 (𝐵𝑔) =
0 ∧ 𝐵𝑔 ∈ GT} denotes the cases that do not contain object missing
errors and DT𝑟 = {𝐵𝑝 |𝐼𝐹𝐷 (𝐵𝑝 ) = 0 ∧ 𝐵𝑝 ∈ DT} denotes the cases
that do not contain fault detection errors:

𝐹𝐿𝐸 = max
𝐵𝑔∈GT𝑟∧𝐵𝑝 ∈DT𝑟

1 − 𝐼𝑂𝑈 (𝐵𝑝 , 𝐵𝑔) (8)

This score indicates that a larger difference between 𝐵𝑝 and 𝐵𝑔
could reveal a more serious detection error.

Finally, our fitness metric can be expressed as a weighted sum
of the three scores:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑚) = 𝛼 ∗ 𝐹𝑂𝑀 + 𝛽 ∗ 𝐹𝐹𝐷 + 𝛾 ∗ 𝐹𝐿𝐸 (9)

where 𝛼 + 𝛽 + 𝛾 = 1. Similar to the traditional software testing
approach to increase the code coverage rate, MultiTest attempts
to generate a test set that can increase this fitness score.
Testing Workflow. Algorithm 1 presents the testing workflow
of MultiTest guided by our fitness metric. The algorithm takes
an MSF perception system 𝑃𝑆 , a set of seed multi-model data M,
an object database O, and the constant maximum number of trials
𝑇𝑅𝑌_𝑁𝑈𝑀 and object insertion 𝑁 as input. The goal is to create a
set of critical test cases T with corresponding ground-truth G for
𝑃𝑆 . The algorithm first selects a valid pose of object instance from
the pose generator (Lines 8-10). Then, the sensor simulation module

Algorithm 1: Fitness-guided testing of MultiTest.
Input: The test MSF system 𝑃𝑆 , the set of seed multi-model dataM,

the object database O, the maximum of object insertion 𝑁 ,
the maximum number of trials𝑇𝑅𝑌_𝑁𝑈𝑀 .

Output: the set of generated data T, the set of ground-truth G.
1 T← ∅;
2 for𝑚 inM do

3 𝐿, 𝑠𝑢𝑐𝑐𝐹𝑙𝑎𝑔← 𝐿𝑜𝑎𝑑𝐿𝑎𝑏𝑒𝑙 (𝑚), 𝑓 𝑎𝑙𝑠𝑒 ;
4 𝑓 𝑖𝑛𝑒𝑠𝑠_𝑖𝑛𝑖𝑡 ← 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑚) ;
5 for 𝑖 = 1, 2, . . . , 𝑁 do

6 Randomly sample an object instance 𝑜 from O;
7 for 𝑖 = 1, 2, . . . ,𝑇𝑅𝑌_𝑁𝑈𝑀 do

8 𝑝𝑜𝑠𝑒 ← 𝑃𝑜𝑠𝑒𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑜,𝑚) ⊲ pose estimation;
9 if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 (𝑝𝑜𝑠𝑒,𝑚) then
10 continue;

11 𝑝𝑐 ← 𝐿𝑖𝑑𝑎𝑟𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 (𝑜,𝑚) ⊲ sensor simulation;
12 𝑖𝑚𝑎𝑔𝑒 ← 𝐶𝑎𝑚𝑒𝑟𝑎𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 (𝑜,𝑚) ;
13 𝑚′ ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑝𝑜𝑠𝑒, 𝑝𝑐, 𝑖𝑚𝑎𝑔𝑒,𝑚) ;
14 𝑚′ ← 𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝐻𝑎𝑛𝑑𝑙𝑒𝑟 (𝑚′ ) ;
15 𝑙𝑏′ ← 𝐿𝑎𝑏𝑒𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑜, 𝑝𝑜𝑠𝑒𝑜 ,𝑚′ ) ;

// save test 𝑚′ with higher fitness

16 𝑓 𝑖𝑛𝑒𝑠𝑠_𝑠𝑐𝑜𝑟𝑒 ← 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑚′ ) ;
17 if 𝑓 𝑖𝑛𝑒𝑠𝑠_𝑠𝑐𝑜𝑟𝑒 > 𝑓 𝑖𝑛𝑒𝑠𝑠_𝑖𝑛𝑖𝑡 then
18 𝑠𝑢𝑐𝑐𝐹𝑙𝑎𝑔, 𝑚 ← 𝑇𝑟𝑢𝑒, 𝑚′;
19 𝐿 ∪ {𝑙𝑏′ };
20 𝑓 𝑖𝑛𝑒𝑠𝑠_𝑖𝑛𝑖𝑡 ← 𝑓 𝑖𝑛𝑒𝑠𝑠_𝑠𝑐𝑜𝑟𝑒 ;
21 break;

22 if 𝑠𝑢𝑐𝑐𝐹𝑙𝑎𝑔 then

23 T, G← T ∪ {𝑚′ }, G ∪ {𝐿};

24 Return: {T,G} ;

renders the object-level point cloud and image before inserting
them into the background data to obtain synthetic data𝑚′ (Lines
11-14). After insertion, we generate the label of test case𝑚′ (Line 15)
and calculate the fitness score by Eq. 9 (Line 16). If the fitness metric
increases, the generated test is retained as a new background scene
for the next iteration of object insertion (Lines 17-21). By contrast,
the generated data is directly discarded, which indicates that 𝑃𝑆
might not be prone to erroneous behavior in this case. Finally, a
successfully generated test case𝑚′ with the label 𝐿 generated by
𝑁 iterations of object insertion is added to T and G, respectively.

4 EXPERIMENTAL SETUP

In this section, we introduce our experimental setup, including our
implementation details, perception systems under test, datasets,
and the research questions we investigate.

4.1 Implementation Details

In all experiments, we set themaximumnumber of trails𝑇𝑅𝑌_𝑁𝑈𝑀

as 5 and the maximum number of insertions 𝑁 as 3 in Alg. 1. 𝛼, 𝛽,𝛾
in Eq. 9 are set to 0.5, 0.25, 0.25, respectively. We leverage the con-
figurations of Velodyne HDL-64E lidar and PointGray Flea2 color
camera provided by KITTI [22] to build our virtual simulator in
Sec. 3. To conduct the experiments, we implement the MultiTest
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Table 1: Perception systems under test and their performance

on KITTI benchmark.

SUT Fusion Year 2D Det. AP 3D Det. AP

CLOCs [39] Late fusion 2020 89.82 89.37
EPNet [27] Deep fusion 2020 89.84 89.54
FConv [54] Weak fusion 2019 90.19 90.42
★ Second [57] — 2018 — 89.09
★ CasRCNN [2] — 2018 90.23 —

upon PyTorch 1.8 and Python 3.7. All experiments are conducted
on a server with an Intel i7-10700K CPU (3.80 GHz), 48 GB RAM,
and an NVIDIA RTX 3070 GPU (8 GB VRAM).

4.2 Perception Systems Under Test

To evaluate the effectiveness and efficiency of MultiTest, we
choose three SOTA camera-LiDAR fusion perception systems cov-
ering different fusion mechanisms from an MSF benchmark [21]
as the SUTs (system under test). Additionally, we consider one
single-sensor detection system for both camera and LiDAR in our
experiment. We compare five perception systems and their original
performance (AP) on KITTI 2D/3D detection benchmark in Table 1.

4.3 Dataset

We select our test seeds from KITTI dataset [22]. KITTI is one of the
most popular autonomous driving datasets, which provides images
and point clouds, with detailed sensor configurations. KITTI’s data
are collected by four high-resolution cameras, a Velodyne HDL-64E
LiDAR and an advanced positioning system from multiple cate-
gories real-world driving scenarios, such as cities, residential areas,
and roads. The KITTI object detection dataset contains 7481 pairs of
image and point cloud data with ground-truth labels. The ground-
truth labels include both annotated 2D and 3D boxes, difficulty
levels and category labels for objects of interest. In this paper, we
focus on the detection of car objects at the moderate difficulty level.

For our object databse O, we utilize ShapeNet [4]. ShapeNet is
a richly-annotated and large-scale dataset of 3D object models. It
contains over 220,000 object-level models from different categories.
In this paper, we build a multi-modal object database from the car
category in ShapeNet, which consists of 3483 objects. We further fil-
tered out damaged models (e.g., empty model files) and uncommon
vehicles on the road (e.g., a racing car). Consequently, our object
database includes 1674 vehicles from five categories: sedan, coupe,
suv, cab, and other unclassified cars.

4.4 Research Questions

To evaluate MultiTest’s performance, we conduct both quanti-
tative and qualitative experiments to answer the following three
research questions (RQs):
• RQ1. How effective is the MultiTest at synthesizing realistic
multi-modal data?
• RQ2. How effective is theMultiTest at generating error-reveling
tests?
• RQ3. How effective is theMultiTest at guiding the improvement
of a SUT through retraining?

To answer RQ1, we verify the effectiveness of two modules in
MultiTest’s multi-modal data synthesis pipeline: Pose Estimation
andMulti-sensor Simulation. We replace each correspondingmodule
with a baseline module to conduct control experiments. Specifically,
we replace MultiTest’s Pose Estimation module with a Random
Pose module andMultiTest’sMulti-sensor Simulationmodule with
Cut&Paste module. The Random Pose module randomly selects
a pose for the object 𝑜 without any constraints. The Cut&Paste
module directly copies an object’s image and point cloud from
other data frames in the KITTI dataset without any re-rendering.
Hence, we can obtain four multi-modal data synthesis pipelines.
We denote them as (1) 𝐶&𝑃 + 𝑃𝑜𝑠𝑒𝑟𝑎𝑛 , (2) 𝐶&𝑃 + 𝑃𝑜𝑠𝑒𝑒𝑠𝑡 , (3) 𝑆𝑖𝑚 +
𝑃𝑜𝑠𝑒𝑟𝑎𝑛 , and (4) 𝑆𝑖𝑚 + 𝑃𝑜𝑠𝑒𝑒𝑠𝑡 (MultiTest). We then conduct both
quantitative and qualitative assessments to verify the data realism.

Quantitative Assessment. We randomly select 200 data pairs
from KITTI’s validation dataset as the initial seeds for each pipeline
and compared the realism of the data generated by each pipeline.
Then we utilize FID (Frechet Inception Distance) [25] and FRD

(Frechet Range Distance) [63] to measure the realism of the im-
age and point cloud, respectively. FID [25] evaluates the squared
Wasserstein distance between feature vectors extracted from the
inception-v3 [50] model from the generated samples 𝐺 and real
samples 𝑅. The computation of FID can be represented as:

FID(R,G) =


𝜇𝑟 − 𝜇𝑔

2 + Tr (Σ𝑟 + Σ𝑔 − 2 (Σ𝑟Σ𝑔 )1/2) (10)

where 𝜇 and Σ represent the mean values and covariance matrix of
generated samples respectively and Tr denotes the trace operator
of the matrix. Similar to FID, FRD [63] measures the similarity
between two sets of point cloud data using the feature vectors from
a pre-trained RangeNet++ [37]. Note that we set the configurable
parameters of these metrics with default/recommended settings.

We further propose a newModality-Consistency (MC)metric,
which is specifically designed for our multi-modal object inser-
tion. For each inserted object 𝑜 ∈ 𝑂 , we first calculate its minimum
bounding box in the point cloud and project it onto the image as 𝐵𝑝𝑔 .
Then, we measure the average IOU between 2D bounding boxes of
an image 𝐵𝑖𝑔 and projected bounding boxes 𝐵𝑝𝑔 through:

𝑀𝐶 =
1
|𝑂 | ∗

∑︁
𝑜∈𝑂
(𝐼𝑂𝑈 (𝐵𝑖𝑔, 𝐵

𝑝
𝑔 )) (11)

Intuitively, this metric measures if the inserted object has consistent
poses and dimensions in both image and point cloud data.

To better demonstrate the realism of test data generated by dif-
ferent pipelines, we also implement two SOTA object-insertion
based testing methods for single-sensor perception systems (i.e.,
MetaOD [52] (camera-based) and TauLim [32] (LiDAR-based)) and
leverage their combination as another comparison baseline for our
quantitative assessment in this RQ.

Qualitative Assessment. We further conduct a user study
to qualitatively assess the naturalness of MultiTest’s generated
multi-modal data. We recruited sixteen participants through the
mailing list of the CS department at a research university. All par-
ticipants had a minimum of a master’s degree in SE/CS. Seven out
of sixteen participants had more than two years of experience in
the field of autonomous driving. During the study, we randomly se-
lected twenty data instances as test seeds. We then ask a participant
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Table 2: Realism of test data generated by different pipelines.

Data Generation

Image Point Cloud Consistency

FID ↓ FRD ↓ MC ↑
𝐶&𝑃 + 𝑃𝑜𝑠𝑒𝑟𝑎𝑛 106.13 148.24 0.31
𝐶&𝑃 + 𝑃𝑜𝑠𝑒𝑒𝑠𝑡 107.62 115.62 0.30
𝑆𝑖𝑚 + 𝑃𝑜𝑠𝑒𝑟𝑎𝑛 91.34 111.14 0.83
𝑀𝑒𝑡𝑎𝑂𝐷 +𝑇𝑎𝑢𝐿𝑖𝑚 65.57 133.61 0.01
𝑆𝑖𝑚 + 𝑃𝑜𝑠𝑒𝑒𝑠𝑡 (MultiTest) 86.89 88.87 0.82

to rank the multi-modal data synthesized by four different pipelines
from each seed through a questionnaire. For each of the twenty
data instances, a participant needs to rank the data quality from
three perspectives: (1) the image’s naturalness, (2) the point cloud’s
naturalness, and (3) the modality-consistency between a pair of
image and point cloud. To mitigate bias, we randomly assigned
the order of data synthesized by different pipelines for each test
seed. We further refer readers to our supplementary website for the
complete questionnaire. After finishing the user study, we use the
one-side Wilcoxon rank-sum test [11] to verify if any of the four
pipelines is significantly preferred by the participants.

To answer RQ2, we utilize random testing as a baseline to eval-
uate the effectiveness of our proposed fitness-guided testing strat-
egy. We also include MetaOD [52] (camera-based), TauLim [32]
(LiDAR-based), and their combinations as the comparison baselines.
Specifically, we randomly select 200 data instances as the initial
seeds from the validation set of the KITTI dataset to generate test
cases using both random testing andMultiTest’s fitness-guided
testing. We then calculate the AP difference between the original
datasets and the generated test cases of a perception system under
test for each configuration. Furthermore, we count the number of
errors with each error category, i.e., object missing, false detection,
and location error (see Sec .2.2). Note that we only count the errors
when a perception system has a confidence level greater than 0.5
for the purpose of mitigating its trivial faults. Each experiment is
repeated five times to mitigate the effect of randomness.

To answer RQ3, we retrain all five perception systems on the
corresponding test cases generated by MultiTest or other base-
lines in RQ2. For each system, we randomly generate 1000 test
cases for each perception system. Then we select 20% of the test
cases and add them to the original KITTI training set. We keep
the training configuration consistent with each system’s original
settings and parameters. We set the number of epochs as 40 for
retraining. After retraining, we compare the performance of each
retrained perception system with its original counterpart on the
remaining 80% of generated test cases. We retrain each system for
five times to mitigate the effect of randomness and compare its
average performance.

5 RESULT ANALYSIS

5.1 RQ1: Realism Validation

Table 2 shows the quantitative results of different data synthe-
sis pipelines. Compared with baselines, MultiTest achieves the
second-lowest FID and the lowest FRD. These results indicate
that MultiTest can generate high quality and realistic image
and point cloud data after the object insertion. We notice that

Figure 5: Modality consistency of data synthesized with dif-

ferent simulation methods.

Figure 6: Participants’ choices over different data synthesis

pipelines in image naturalness, point cloud naturalness, and
modality consistency.

MetaOD+TauLim achieves better image quality (FID). A plausible
explanation is that MetaOD only inserts one object per image while
MultiTest may insert multiple objects. Our further investigation
shows that when only inserting one object,MultiTest can generate
images with similar quality (FID: 62.53). However, the combination
of MetaOD and TauLim produces the lowest MC, indicating that
directly combining two single-sensor testing methods may produce
data with high inconsistency. We also find that compared with
the Copy&Paste method, our Multi-sensor Simulation module can
generate much more modality-consistent data pairs of images and
point clouds. A plausible explanation is that Copy&Paste does not
take sensor’s position and inserted object’s pose into account. As
the example shown in Fig. 5 (a), given an estimated pose to insert
a car object, Copy&Paste directly copies a car object from existing
data (Fig. 5 (b)). However, the image data can not be rotated to align
with the given pose, resulting in modality inconsistency (Fig. 5 (c))
compared withMultiTest (Fig. 5 (d)). Furthermore, we find that
our Pose Estimation module outperforms the Random Pose on the
naturalness of the generated point cloud. By replacing Random Pose
with MultiTest’s Pose Estimation, the FRD values decreased by
22% and 21% for Copy&Paste and Multi-sensor Simulation, respec-
tively. This is largely attributed to the fact that Random Pose does
not take physical constraints into account when inserting objects.
Consequently, it inevitably inserts objects into invalid positions.

Fig. 6 shows the participants’ preference among four different
data synthesis pipelines in terms of the image naturalness, point
cloud naturalness, and modality consistency between image and
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Table 3: Testing results of five perception systems with with different guidance approaches.

3D Object Detection 2D Object Detection
Metric Method

EPNet FConv CLOCs ★ Second Avg. EPNet FConv CLOCs ★ CasRCNN Avg.
MetaOD 0.05 1.84 0.14 — 0.68 0.01 1.21 0.12 1.12 0.62
TauLim 0.14 2.40 0.28 5.78 2.15 0.01 0.63 0.16 — 0.27
MetaOD+TauLim 0.17 4.36 2.02 5.86 3.10 0.01 1.49 1.28 1.05 0.96
MultiTest (Random) 0.52 20.34 5.77 9.15 8.95 1.91 16.89 6.17 20.98 11.49

AP Difference ↑

MultiTest (Guided) 10.25 32.31 22.64 26.01 22.80 2.84 24.29 16.64 30.09 18.47
MetaOD 1 17 7 — 8 2 32 18 35 22
TauLim 2 15 7 16 10 18 22 18 — 19
MetaOD+TauLim 2 19 8 17 12 19 21 17 25 21
MultiTest (Random) 9 83 25 23 35 8 50 21 56 34

Location Error

MultiTest (Guided) 11 86 24 21 36 7 70 22 80 45
MetaOD 1 89 52 — 47 0 2 1 2 1
TauLim 15 60 33 56 41 3 2 1 — 2
MetaOD+TauLim 14 62 37 61 43 2 3 1 2 2
MultiTest (Random) 10 65 38 67 45 0 1 1 1 1

False Detection

MultiTest (Guided) 9 81 39 71 50 0 4 1 3 2
MetaOD 0 12 7 — 7 0 4 3 4 3
TauLim 4 18 7 1 8 0 2 2 — 2
MetaOD+TauLim 4 23 10 1 10 0 2 2 2 1
MultiTest (Random) 31 135 90 34 72 5 75 69 75 56

Object Missing

MultiTest (Guided) 49 178 153 51 108 12 96 121 90 80

point cloud. We find that more participants prefer MultiTest over
the three baseline methods on all three degrees. Wilcoxon’s rank-
sum test results suggest that the mean ranking differences between
MultiTest and the second-chosen method are statistically signifi-
cant (𝑝<0.0001). These results suggest that our autonomous driving
practitioners agree that MultiTest provides the most realistic and
natural synthesized data among all four pipelines.

5.2 RQ2: Fault Detection Capability

Table 3 shows the testing results of five perception systems on
2D/3D object detection tasks. A larger difference in average preci-
sion (AP) signifies that a perception system performs considerably
worse on the generated test cases compared to the original dataset.
Compare with other baselines, we observe a clear and consistent
trend of decreased AP performance inMultiTest across various
tasks and perception systems. These results affirm that MultiTest
is effective in generating critical and challenging test cases. Fur-
thermore, our proposed method proves to be proficient in detecting
various categories of errors, particularly in identifying object miss-
ing errors. However, it is worth noting an exception, where only a
small number of false detection errors were detected for 2D object
detection. This might be due to the relatively small image size in
KITTI compared with the point cloud. As a result, cases where a
detected bounding box is disjoint from all ground truth bounding
boxes (i.e., IOU=0) are rare.

We also find that compared with the random baseline, our fitness-
guided testing leads to a more significant decrease in average pre-
cision (AP) compared to the random testing baseline. This finding
confirms the effectiveness of MultiTest’s fitness metric and its
guidance, establishing that MultiTest is more efficient at generat-
ing test cases. Additionally, we observe thatMultiTest triggered

Table 4: Five perception system’s performance after retrain-

ing with different approaches on the generated tests.

Model Det.

MultiTest

(Guided)

MultiTest

(Random)
MetaOD TauLim

MetaOD

+TauLim
Original

EPNet 3D 80.87 77.34 75.51 74.37 75.39 75.53
2D 89.73 88.88 89.04 88.77 88.80 89.11
3D 82.72 79.30 49.34 65.19 49.88 57.98FConv 2D 90.63 88.30 62.46 71.90 63.88 70.56

CLOCs 3D 83.63 81.47 68.73 69.79 70.74 62.34
2D 90.49 89.19 80.36 80.31 80.29 71.10

★ Second 3D 76.43 74.89 — 71.04 71.51 65.78
★ CasRcnn 2D 94.86 93.20 60.03 — 59.82 60.21
Average AP 86.17 84.07 69.35 74.48 70.04 69.08

a higher number of object missing errors compared to the random
testing baseline. These results suggest that MultiTest’s fitness-
guided strategy improves overall testing efficiency, resulting in the
synthesis of more error-revealing test cases.

5.3 RQ3: Performance Improvement

Table 4 shows the AP performance of all subject perception systems
after retraining with test cases generated byMultiTest or other
baseline methods. MultiTest can significantly improve the perfor-
mance of all systems by retraining. This result indicates that the
data generated by MultiTest includes challenging cases that can
significantly help improve a perception system’s robustness, show-
ing the effectiveness of our testing. Compared with MultiTest,
other baseline methods show relatively low capability in improving
performance and in some cases can even be harmful. A possible
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reason is that test cases generated by single-sensor testing meth-
ods or their combination fail to maintain modal consistency and
therefore hardly benefit in the retraining process.

Moreover, we find that the average AP performance improve-
ment with the fitness-guided testing and random testing across
different systems are 86.05 and 83.79, respectively. Though both
testing strategies can synthesize data that potentially help improve
a perception system’s performance, our fitness-guided testing is
specifically more effective and efficient. This might largely attribute
to the fact that MultiTest’s fitness-guided testing can generate
more error-revealing test cases.

6 DISCUSSION

Data realism affects testing effectiveness. MultiTest is de-
signed to automatically generate realistic multi-modal data to assess
the potential risks of a perception system when deployed in real-
world scenarios. Both our quantitative evaluation and user study
results confirm the realism of the data synthesized byMultiTest.
Experiments with five perception systems further suggest that re-
alistic data facilitates effective and efficient testing. We attribute
MultiTest’s superior performance to two important designs.

Firstly, our physical-aware object insertion can generate natural
yet challenging multi-modal test data for a perception system. Exist-
ing mutation-based testing methods usually face challenges that the
perturbation (e.g., adversarial noises) might not be naturally exist
in the real world. Therefore, it is questionable if the error-revealing
test cases generated by these methods could help understand a
SUT’s potential risks. Compared with existing object insertion test-
ing methods,MultiTest takes real-world physical constraints into
account to ensure the semantic validity of its insertion.

Secondly, MultiTest simultaneously generates modality-
consistent data across different sensors, which is crucial for testing
MSF-based perception systems. Existing testing methods usually
focus on single-sensor perception systems. Indeed, a combination of
different single-sensor testing methods can also be used for testing
an MSF system. However, without ensuring modality-consistency,
the validity of the generated test cases becomes questionable. For
instance, mis-aligned pairs of images and point clouds are rarely
found in real-world autonomous driving applications.
Testing efficiency trade-offs. Different parameter configurations
could potentially affect MultiTest’s testing efficiency. Intuitively,
inserting more objects could create more challenging test cases and
potentially reveal more system faults. However, as the number of
insertions grows, it might become harder for MultiTest to find
possible positions for the insertion. We set up an ablation study
to verify MultiTest’s testing efficiency trade-offs. Specifically,
We set the maximum number of trials 𝑇𝑅𝑌_𝑁𝑈𝑀 as 10 and the
maximum object insertion number 𝑁 from 1 to 6. We randomly
select 50 test seeds from KITTI and record the proportion of seeds
that successfully generate test cases with different 𝑁 and calculate
the average number of iterations required per seed.

Table 5 validates our hypothesis. As the number of objects in-
creases, the proportion of successful seeds decreases. About 50% of
the seeds are able to insert three objects, and this value drops to
about 25% when N is 6. Moreover, the average number of iterations

Table 5: Number of successful seeds and average of iterations

for insertion in different numbers of inserted objects.

Model Metric

Number of inserted objects: 𝑁

1 2 3 4 5 6

EPNet Seeds 0.70 0.48 0.28 0.20 0.14 0.12
Iterations 1.46 6.42 16.93 27.70 43.57 53.00
Seeds 0.92 0.76 0.60 0.50 0.40 0.30FConv Iterations 1.00 3.58 7.30 11.20 16.90 25.87

CLOCs Seeds 0.74 0.66 0.48 0.34 0.24 0.22
Iterations 2.03 4.94 11.25 20.53 34.92 41.45
Seeds 0.84 0.72 0.54 0.40 0.32 0.20

★ Second Iterations 1.29 4.56 10.89 19.65 28.25 50.20

★ CasRCNN Seeds 0.88 0.74 0.56 0.48 0.32 0.26
Iterations 1.45 4.73 10.25 14.71 27.00 36.54

grows exponentially with the number of inserted objects. We fur-
ther qualitatively check the seeds and find that the complex scenes
in autonomous driving (e.g., cars driving on a busy city road) could
significantly increase the difficulty of object insertion. In this paper,
we set 𝑁 is 3 to balance the testing efficiency trade-offs.
Limitations and future work. OurMultiTest is able to generate
test cases to reveal three different types of faults in object detec-
tion. In future work, one may consider controlling the coefficients
in Eq. 9 to generate test cases with preferences for different fault
types according to the developer’s intention. Currently,MultiTest
leverages a model, S2CRNet [31], to improve the naturalness of
the synthesized images. It would be worth-while to explore more
advanced methods, e.g., SOTA generative AI and diffusion mod-
els [45, 48]. Furthermore, we have only experimentedMultiTest
with object detection systems. One can consider how to leverage
MultiTest to test different MSF perception systems, e.g., object
tracking systems. Compared with testing object detection, testing
object tracking would require the synthesis of sequential data (i.e.,
a series of temporally correlated data). How to ensure the temporal
consistency between data frames and how to generate trajecto-
ries for the object to be inserted could be challenging but worth
investigating.
Threats to validity. In terms of construct validity, one potential
threat comes from the measurement of the realism of MultiTest’s
generated data since there is no ground truth label. To mitigate this,
we conduct both quantitative and qualitative experiments to assess
the quality of the synthesized data. Another construct threat lies
in the randomness inherent in our experiments, specifically in the
testing (RQ2) and retraining (RQ3). To combat this, we repeat our
experiment on testing and retraining for five times to reduce the
influence of randomness.

In terms of internal validity, one potential threat is that the
data generated by the virtual simulator may differ from real-world.
Besides, the quality of 3D models inMultiTest’s object database
could also affect the quality of synthesized data. To mitigate these,
we utilize the well-known simulators (i.e., Blender and Open3D)
and select a popular 3D object database ShapeNet.

In terms of external validity, one potential threat is that our
analysis results may not be generalized to other perception systems.
To combat this threat, we experimented with three MSF systems
with different fusion mechanisms and two single-sensor detection
models to evaluate the effectiveness of MultiTest.
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7 RELATEDWORKS

Multi-sensor Fusion. MV3D [6] is a pioneering work in the field
of AI-enabled multi-sensor fusion. It introduces a multi-view based
deep fusion framework that extracts hidden features from differ-
ent view representations of 3D point clouds and images, enabling
region-wise feature fusion. To further enhance system performance,
subsequent deep-fusion based methods directly fuse the features ex-
tracted from raw data to mitigate information loss caused by point
cloud view transformations. For instance, MVX-net [49], a voxel-
based fusion method, and EPNet [27], a point-based fusion method,
are notable examples of such techniques. In the realm of late fusion,
CLOCs [39] is a representative work that fuses the output results
of different detectors. DFMOT [53] is another late-fusion based
work for object tracking that employs a four-level deep association
mechanism to achieve a fast fusion of 2D and 3D trajectories. Weak
fusion often involves using 2D proposals as guidance to extract the
frustum region from the point cloud [42, 54]. F-PointNets [42] pio-
neered this approach for object detection, and FConv [54] extended
it further by incorporating a post-grouping aggregation scheme,
leading to end-to-end estimation and improved performance.
Quality Assurance of Perception Systems. The first group of
related works is on automatic testing for visual perception sys-
tems [52, 55, 58]. Wang et al. first propose MetaOD [52] to test
object detection systems by inserting objects based on metamor-
phic testing theory. However, this approach faces limitations when
it comes to inserting image object instances in valid positions due to
the lack of 3D information. Another set of related work focuses on
LiDAR-based perception systems robustness testing [8, 23, 32]. Guo
et al. [23] and Christian et al. [8] leverage data mutation operators
to generate test point clouds and check the failure in perception
systems based on metamorphic relationships. However, extending
these testing methods to MSF perception systems becomes chal-
lenging due to the multi-modal data required by MSF systems.

On the other hand, there are a few works that focus on bench-
marking MSF systems [21, 59]. Recently, Gao et al. [21] create an
early public benchmark of MSF systems and perform a large-scale
empirical study to investigate their robustness performance. Along
this direction, we design and implement MultiTest for automated
testing of MSF perception systems. We adopt the MSF system de-
signed for object detection tasks provided by the MSF benchmark
as our experimental subject. There are also some other works that
assess a perception system’s quality from the security perspective
by inserting adversarial objects [1, 3, 51].
General Deep Learning System Testing. Inspired by the effec-
tiveness of code coverage applied to traditional software testing,
researchers have proposed several neuron coverage criteria to guide
the testing process of Deep Learning (DL) systems. Pei et al. [40]
first propose the neuron coverage criterion to measure the extent
of state exploration in deep neural networks. Ma et al. [36] fur-
ther refined the neuron coverage criterion and proposed a set of
fine-grained testing criteria. With the guidance of the neuron cov-
erage criterion, several test generation techniques have been pro-
posed to detect erroneous behaviors of DNNs by increasing the
neuron coverage [14, 56]. To detect erroneous behaviors of DL
systems effectively, several domain-specific guidance metrics are
proposed [18, 20]. DeepGini leverages Gini impurity to measure

the fault-revealing capabilities of test cases [18]. In contrast, our
work takes a different approach by focusing on a context-specified
problem, specifically on the testing of real-world MSF perception
systems. This specialized focus allows us to address the unique
challenges and requirements posed by the systems under test.

8 CONCLUSION

In this paper, we present MultiTest, the first automated testing
tool designed specifically for MSF perception systems. MultiTest
employs a physical-aware approach to render modality-consistent
object instances using virtual sensors. Then, MultiTest synthe-
sizes realistic images and point clouds by inserting object instances
into valid yet challenging positions within the target scene. More-
over, MultiTest incorporates fitness metric guidance to boost the
testing efficiency and effectiveness. We evaluate the performance
of MultiTest using three state-of-the-art MSF-based detectors
and two single-sensor based detectors. The experimental results
demonstrate thatMultiTest efficiently detects erroneous behav-
ior in the systems under test and improves a system’s robustness
through retraining. In the future, we plan to extend the capabilities
of MultiTest to support a wider range of MSF perception systems
and tasks, such as object tracking and depth completion. By doing
so, we aim to broaden its applicability and impact in the field of
multi-sensor fusion system testing.
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