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ABSTRACT
Multi-Sensor Fusion (MSF) based perception systems have been
the foundation in supporting many industrial applications and
domains, such as self-driving cars, robotic arms, and unmanned
aerial vehicles. Over the past few years, the fast progress in data-
driven artificial intelligence (AI) has brought a fast-increasing trend
to empower MSF systems by deep learning techniques to further
improve performance, especially on intelligent systems and their
perception systems. Although quite a few AI-enabled MSF percep-
tion systems and techniques have been proposed, up to the present,
limited benchmarks that focus onMSF perception are publicly avail-
able. Given that many intelligent systems such as self-driving cars
are operated in safety-critical contexts where perception systems
play an important role, there comes an urgent need for a more
in-depth understanding of the performance and reliability of these
MSF systems.

To bridge this gap, we initiate an early step in this direction and
construct a public benchmark of AI-enabled MSF-based perception
systems including three commonly adopted tasks (i.e., object detec-
tion, object tracking, and depth completion). Based on this, to com-
prehensively understand MSF systems’ robustness and reliability,
we design 14 common and realistic corruption patterns to synthe-
size large-scale corrupted datasets. We further perform a systematic
evaluation of these systems through our large-scale evaluation and
identify the following key findings: (1) existing AI-enabled MSF
systems are not robust enough against corrupted sensor signals; (2)
small synchronization and calibration errors can lead to a crash of
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AI-enabled MSF systems; (3) existing AI-enabled MSF systems are
usually tightly-coupled in which bugs/errors from an individual
sensor could result in a system crash; (4) the robustness of MSF sys-
tems can be enhanced by improving fusion mechanisms. Our results
reveal the vulnerability of the current AI-enabled MSF perception
systems, calling for researchers and practitioners to take robust-
ness and reliability into account when designing AI-enabled MSF.
Our benchmark, code, and detailed evaluation results are publicly
available at https://sites.google.com/view/ai-msf-benchmark.
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1 INTRODUCTION
Multi-sensor fusion (MSF) refers to the technique that combines
data from multiple sources of sensors to achieve specific tasks,
which has been widely adopted in many real-world complex sys-
tems. The integration of information from different sensors avoids
the inherent perception limitations of individual sensors and im-
proves the system’s overall performance. Over the past years, MSF-
based perception systems have been widely used in various indus-
trial domains and safety-critical applications, such as self-driving
cars [24], unmanned aerial vehicles [36], and robotic systems [29].

With recent advances in data-driven artificial intelligence (AI),
there comes an increasing trend in proposing deep learning (DL)
techniques to further enable more advanced heterogeneous data
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processing from different sensors, in order to achieve more accurate
perception and prediction. Given the advantage of deep neural
networks (DNNs) in processing and extracting complex semantic
information from sensors’ data (e.g., image, point cloud), AI-enabled
MSF has been increasingly adopted in the perception systems of
autonomous driving [24, 36].

The rapid development of AI-enabled MSF systems also brings
challenges and concerns. One of the biggest concerns is the lack of
a deep understanding of the current AI-enabled MSF’s reliability.
In practice, an AI-enabled MSF system could behave incorrectly
and lead to severe accidents in safety-critical contexts, especially
in autonomous driving [10, 51]. Thus, it is highly desirable to en-
able testing, analysis, and systematic assessment of such intelligent
systems beforehand comprehensively. One common practice to
enable such quality assurance activities in AI/SE communities is to
establish a benchmark that enables both researchers and practition-
ers to perform systematic studies and develop novel techniques to
better fulfill important quality requirements. However, to the best
of our knowledge, up to the present, few benchmarks specifically
designed for AI-enabled MSF are yet available. It is unclear whether
and to what extent the potential quality issues and risks can be, how
they are brought from each sensing unit, and their impacts on the
integration and the state-of-the-art information fusion processes.

To bridge this gap, in this paper, we initiate an early step to
present a benchmark and perform an empirical study of AI-enabled
MSF perception systems. Fig. 1 summarizes the high-level design
and workflow of our benchmark construction and our empirical
study, in which we mainly investigate the following research ques-
tions, aiming to identify the potential challenges and opportunities:

• RQ1. How do AI-enabled MSF-based perception systems
perform against common corrupted signals? This RQ aims
to investigate the potential risks of AI-enabled MSF systems
against corrupted signals that commonly occur in the operational
environments. Through a large-scale evaluation on eleven types
of corrupted sensor signals, we find that the current AI-enabled
MSF systems are not robust enough, especially against weather
condition changes.

• RQ2. How sensitive is AI-enabled MSF when facing spatial
and temporal misalignment of sensors? In the practical open
and wild environment, it is almost impossible to always main-
tain perfect calibration or precise time synchronization of the
system across sensors. RQ2 aims to investigate the sensitivity
of AI-enabled MSF to spatial and temporal misalignment. Our
experiment results reveal that even small calibration or synchro-
nization issues could lead to abnormal behaviors of the system.

• RQ3. To what extent are existing sensing components cou-
pled of an AI-enabled MSF system? A robust and reliable
MSF should not completely fail when one or a part of the whole
sensing modules lose the source signal. RQ3 aims to investigate
how AI-enabled MSF systems can be impacted when one source
of the signal is partially/completely lost. Overall, we find that the
tightly-coupled architecture of AI-enabled MSF systems exhibits
less robustness against signal loss.

• RQ4. What is the weakness of different AI-enabled MSF
mechanisms and is it possible to repair them? RQ4 aims
to investigate the unique advantages of each fusion mechanism

and potential opportunities for improving the robustness of AI-
enabled MSF systems. Our results demonstrate that deep fusion
is more robust in some cases, however, weak and late fusion can
be easier to be repaired in terms of robustness against corruption
patterns.

To sum up, this work makes the following contributions:

• Benchmark. We initiate to create an early public benchmark
of AI-enabled MSF-based perception systems. This provides a
common ground for the study and analysis of AI-enabledMSF sys-
tems’ robustness and enables future quality assurance research
in this direction.

• Empirical Study. Based on the benchmark, we perform a large-
scale empirical study of AI-enabled MSF systems to investigate
their current status regarding robustness.

• Discussion. We further make discussions about existing AI-
enabled MSF systems and future directions, including the unique
advantages of different fusion mechanisms as well as the oppor-
tunities of their robustness enhancement.

To the best of our knowledge, this paper is among the very early
research to benchmark and investigate the MSF system, which is a
common and representative AI system composed of multiple sens-
ing channels and corresponding models. On one hand, at present, it
is not clear how much and to what extent each sensing unit could
impact the integrated sensing results of an MSF; it is not clear how
the issues of different sensing units and channels are involved and
propagate to the final results of different MSF designs either. Creat-
ing a benchmark at the current stage enables to investigate these
important questions quantitatively, which also enables further rele-
vant quality assurance research along this direction. On the other
hand, in general, MSF-based perception systems play a key role to
enable autonomous and intelligent systems, which potentially has
a big impact on many applications and domains. With the recent
fast pace in transforming into the data-driven intelligent era, we
believe an early stage benchmark and investigation of the current
MSF systems empowered by deep learning would also benefit the
practitioners in understanding the limitation and proposing better
MSF engineering techniques, paving the path towards designing
safe and reliable autonomous intelligent systems.

2 BACKGROUND
2.1 Perception Systems in Intelligent Systems
An intelligent system (e.g., a self-driving car, a robotic, an unmanned
aerial vehicle) is usually a complex system composed of various
subsystems. These subsystems are cooperated to ensure safe and
reliable operations of the intelligent system. The perception system
is one of the key components in an intelligent system, which is
in charge of sensing and processing environmental information
through sensors to perform crucial tasks, e.g., object detection and
object tracking. The prediction results from perception systems are
then propagated to other components in the intelligent system such
as planning and control systems. The perception systems lay the
foundation of the intelligent system’s workflow in perceiving and
understanding the environment, which also significantly impact
the quality and reliability of the whole system.
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Figure 1: Workflow summary of AI-enabled MSF benchmark construction, and high-level empirical study design.

Most industrial-level systems leverage multi-sensor fusion (MSF)
strategy to avoid inherent perception limitations of individual sen-
sors and thus sense the environmentmore reliably [34]. For instance,
the camera and LiDAR are usually fused in self-driving cars since
camera is more effective in capturing semantic information and
LiDAR could provide more accurate geographic information [9].
As shown in Fig. 1 (right part), each sensor in a camera-LiDAR
fusion first senses the surrounding environment individually. Then,
signals from different sensors are transformed into the same co-
ordinate system and matched across the timestamps based on the
temporal and spatial calibration among sensors. Finally, the fusion
module receives calibrated and synchronized signals from different
sensors, and fuses them to make predictions for downstream tasks.

2.2 AI-enabled Multi-Sensor Fusion
Different from traditional MSF that only fuses the data or output,
AI-enabled MSF also has the possibility to fuse the deep semantic
features learned by DNNs. We take the fusion of camera and LiDAR
as an example (right part of Fig. 1) in the following sections.

Each branch that processes signals in AI-enabled MSF can be
represented as a composite function chain (Eq. 1) that maps the
input data𝑀 to the output result 𝑓 𝐿 .

𝑓 𝐿 = 𝐹 (𝐿) (𝐹 (𝐿−1) ( · · · (𝐹 (0) (𝑀)))), (1)

where 𝐿 denotes the depth of a branch. The medium output in the
chain, i.e., 𝐹 ( 𝑗) (·), 𝑗 = {1, 2, . . . , 𝐿 − 1}, represents the output from
𝑗th hidden layer in a DNN.

Based on the stage where the fusion is made [12, 20] (see Fig. 2),
AI-enabled MSF can be categorized into four different mechanisms
at a high level: early fusion, late fusion, deep fusion, and weak fusion.
Since early fusion is not commonly used in AI-enabled MSF, we
focus on the other three fusion mechanisms in the rest of this paper.
For a 𝐿 layer deep neural network, we denote 𝑀𝑖 and 𝑀𝑗 as two
different modalities and define ⊕ as a fusion operation. Now we
briefly introduce each MSF mechanism.

Late fusion directly combines the output results of each branch,
which can be formulated as:

𝑓 𝐿 = 𝐹 (𝐿) (𝐹 (𝐿−1)
𝑖

( · · · (𝐹 (0)
𝑖

(𝑀𝑖 ))))

⊕ 𝐹 (𝐿) (𝐹 (𝐿−1)
𝑗

( · · · (𝐹 (0)
𝑗

(𝑀𝑗 ))))
(2)

Figure 2: Different AI-enabled MSF mechanisms.

Each branch in late fusion process data from sensors indepen-
dently and does not depend on specific network architecture. Com-
pared with other fusion mechanisms, late fusion is highly flexible.
For instance, late fusion can easily combine image-based object de-
tectors and LiDAR-based ones. Late fusion does not involve hidden
feature interaction, which also leads to higher efficiency.

Deep fusion involves frequent interactions among hidden fea-
tures from different branches to gain rich semantic information.
Suppose that the depth of branch 𝑖 is greater than that of branch 𝑗 ,
when only one feature fusion is performed, the deep fusion can be
formulated as:

𝑓 𝐿 = 𝐹 (𝐿) ( · · · (𝐹 (𝐿∗
𝑖
+1) (𝐹 (𝐿∗

𝑖
) ( · · · (𝐹 (0) (𝑀𝑖 )))

⊕ 𝐹
(𝐿∗

𝑗
) ( · · · (𝐹 (0) (𝑀𝑗 )))))),

(3)

where 𝐿∗
𝑖
, 𝐿∗

𝑗
denotes that the fusion starts from 𝑖th and 𝑗 th hidden

layers, respectively.
Weak fusion does not fuse the hidden features nor fuse the

output results. Instead, weak fusion adopts rule-based methods to
transform data from one branch to guide the process of data in
another branch. The process of weak fusion can be described as:

𝑓 𝐿 = 𝐹 (𝐿) (𝐹 (𝐿−1) ( · · · 𝐹 (0) (𝐺 (𝑀𝑖 ) ⊕ 𝑀𝑗 ))), (4)

where G is the function that extracts the guidance from branch 𝑖 .
One typical example of weak fusion is extracting the frustums in
the point cloud data using the 2D detection bounding boxes from
the image as guidance [35, 44].



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xinyu Gao, Zhijie Wang, Yang Feng, Lei Ma, Zhenyu Chen, and Baowen Xu

Table 1: The collected MSF systems. Performance of each sys-
tem is evaluated by task-specific metrics (detailed in Sec. 3.3).

System Task Fusion Year Modality Performance
EPNet [21] Object Detection Deep 2020 C+L 82.70
FConv [44] Object Detection Weak 2019 C+L 79.06
CLOCs [33] Object Detection Late 2020 C+L 79.70
JMODT [19] Object Tracking Deep 2021 C+L 86.12
DFMOT [43] Object Tracking Late 2022 C+L 80.17
TWISE [22] Depth Completion Deep 2021 C+L 1009.64
MDANet [25] Depth Completion Deep 2021 C+L 898.39

3 BENCHMARK CONSTRUCTION
3.1 Benchmark Collection
To collect as many appropriate AI-enabled MSF perception systems
as possible for our study, we mainly focus on two sources: (1) the
leaderboard of KITTI benchmark [16], and (2) existing MSF-related
literature. KITTI is a public autonomous driving benchmark that in-
volves several different perception tasks. For MSF-related literature,
we collect papers published in relevant top-tier conferences and
journals during the last four years, covering software engineering,
robotics, computer vision, etc. We refer readers to our supplemen-
tary website [15] for a complete list of selected venues. Eventually,
we selected 7 state-of-the-art MSF systems from these two sources
based on the following criteria:
• Multi-sensors. An MSF system should involve two or more
types of different sensors.

• Open-source. An MSF system should be open-source so that
we can conduct experimental evaluations and enable further
replication studies.

• Data available. An MSF system should have open-source data
for training and evaluation.

• Representative task. An MSF system should be designed for
representative perception tasks with real-world applications, e.g.,
object detection.
Table 1 summarizes the sevenMSF systems selected in our bench-

mark. These seven systems cover three different tasks and three
different fusion mechanisms. Due to the page limit, we refer audi-
ences to our supplementary website [15] for details of each MSF
system.

3.2 Corruption Patterns
Operational environments of many MSF systems are usually open
with unexpected condition changes compared with environments
during the design phase. Such environment changes are more crit-
ical to AI-enabled MSF systems due to the data-driven nature of
ML and DL. For instance, an autonomous driving system’s object
detector might be trained with data only collected from sunny
days. While the autonomous driving system is expected to be safe
and reliable during rainy days, however, it is hard to determine to
what extent the system can handle such a weather change. That
is, the weather change in the open environment could result in
corrupted sensor signals, leading to potential distribution changes
of data that affect an MSF system’s performance. To evaluate an
MSF system’s performance against such operational environments’
changes, collecting and labeling real-world data is ideal but not

Table 2: Corruption patterns used in this study.

Category Corruption Modality
Rain (RN) Camera & LiDAR
Fog (FG) Camera & LiDAR
Brightness (BR) Camera

Weather
Corruption

Darkness (DK) Camera
Distortion (DT) Camera
Motion Blur (MB) Camera
Defocus Blur (DB) Camera
Image Gaussian Noise (GN) Camera
Point Cloud Gaussian Noise (GN) LiDAR
Image Impulse Noise (IN) Camera

Sensor
Corruption

Point Cloud Impulse Noise (IN) LiDAR
Spatial Misalignment (SM) Camera & LiDARSensor

Misalignment Temporal Misalignment (TM) Camera & LiDAR

feasible. To address these, we collect and design thirteen corruption
patterns (Table 2) to synthesize corrupted signals for MSF systems,
which can be grouped into three categories: (1) weather corruption,
(2) sensor corruption, and (3) sensor misalignment. Weather cor-
ruptions represent the external environment changes of an MSF
system, e.g., rainy/foggy days and bright/dark light conditions for
a self-driving car, a UAV, etc. Sensor corruptions reflect the internal
environment changes of an MSF system, such as transmission noise.
Sensor misalignment is specifically designed for MSF systems given
that the fusion of different signals requires accurate temporal and
spatial calibration. Now we briefly introduce each category.

3.2.1 Weather Corruption. Weather conditions are an important
factor that can inevitably affect the sensor’s perception in the open
environment, resulting in the performance degradation of MSF
systems. For example, normal cameras could hardly perceive the
surroundings at night. In this work, we leverage weather corruption
patterns from two perspectives: (1) light conditions change, and (2)
adverse weather conditions.
Lighting conditions. The camera is sensitive to lighting condi-
tions, variations in daylight and road illumination can easily affect
the image quality, while lighting conditions’ effects on LiDAR are
limited [12]. Therefore, we mainly focus on adjusting the bright-
ness (BR) and darkness (DK) of the image pixels.
Weather conditions. Adverse weather can cause asymmetric mea-
surement distortion of sensors, which poses a significant challenge
for MSF perception systems that rely on redundant information. For
example, on rainy days, raindrops could lead to pixel attenuation
and rain streaks on the image, meanwhile, the droplets will make
the laser scattering and absorption, resulting in a lower intensity
of points and perceived quality of LiDAR.

In our benchmark, we choose the domain-specific physical model
to simulate the properties of two representative adverseweather, i.e.,
rain (RN) and fog (FG). Specifically, we adopt rain model described
in [17] and fog model described in [23] for camera, and rain/fog
model described in [26] for LiDAR. Another critical problem when
designing rain or fog corruptions is ensuring different sensors are
sensing identical environments, e.g., the camera and LiDAR are



Benchmarking Robustness of AI-enabled Multi-sensor Fusion Systems: Challenges and Opportunities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(a) Fog (b) Rain

Figure 3: Feature visualization of simulated rain/fog by T-SNEs.

both sensing a rain of 10mm/h. To address this, we control the
environmental parameters in LiDAR and camera model to ensure
the consistency of the rain’s volumes or fog’s maximum visibility.
Realisticness validation of Rain and Fog corruption. To
validate the naturalness of rain and fog corruptions, we train
deep fusion-based classifiers to distinguish real rain/fog scenes
from clean scenes using datasets collected from real rainy/foggy
weather [3, 4]. Then, we use these trained classifiers to make predic-
tions on simulated data to measure the similarity between simulated
and real data. We retrain each classifier five times and take the aver-
aged accuracy. The average classification accuracy of these trained
weather classifiers is 98.6% and 98.0% on simulated fog/rain data.
These results confirm that the simulated fog/rain data are highly
similar compared to the real data.

We further analyze the similarity between the semantic features’
distribution of real and simulated data. Specifically, we extract the
high-level semantic features from the trained classifier. Then, we
utilize T-SNE [41] to reduce the dimensionality of acquired features
to 2 and visualize these 2D features. As shown in Figure 3, the
distributions of the real and simulated corruptions are similar.

3.2.2 Sensor Corruption. Sensor corruptions reflect internal envi-
ronment changes that lead to corrupted sensor signals, e.g., noises
during transmission, and sensor artifacts that lead to blurry im-
ages. In this benchmark, we consider sensor corruption from two
perspectives: (1) noise pattern, and (2) sensor artifacts.
Noise Pattern. Noise typically exists in both camera and Li-
DAR [11]. There are two main sources of noise, one is from the
sensor itself, such as sensor vibration [42], random reflections and
the low-ranging accuracy of LiDAR lasers [28]. The other is due
to the digital signal in its transmission recording process [45]. We
leverage two of the most common noise for each sensor, i.e., Gauss-
ian noise (GN) and impulse noise (IN). Specifically, Gaussian
noise applies Gaussian distributed noise to each point’s coordinate
in a point cloud or each pixel’s value in an image. Impulse noise ap-
plies deterministic perturbations to a subset of points or randomly
changes the value of image pixels.
Sensor Artifacts. Sensor corruption could also result in artifacts
of sensing results. For instance, defocus blur (DB) occurs when
a camera is out of focus [18];motion blur (MB) appears when a
camera is shaking ormoving quickly [18].Distortion (DT) is one of
the common basic optical aberrations caused by the optical design

of lenses [48]. Note that, as an early attempt, we only consider
artifacts of camera sensors. We leave artifacts of LiDAR sensors,
e.g., one of LiDAR’s beams is broken, as the future work.

3.2.3 Sensor Misalignment. Well-calibrated and synchronized sen-
sors are a prerequisite for MSF-based perception systems. However,
it is not easy to guarantee the perfect alignment of sensors in the
real world [12]. Therefore, we design two corruption patterns, Spa-
tial misalignment (SM) and Temporal misalignment (TM), to
simulate the misalignment between the camera and LiDAR.
Spatial misalignment. MSF system requires an external calibra-
tion of each sensor during the assembly process to ensure that
the position measured in different coordinate systems can be con-
verted to each other. However, even with well-calibrated sensors,
the position of the sensors can inevitably deviate due to mechanical
vibrations (e.g., when a self-driving car rides on a bumpy road) and
thermal fluctuations [50]. Suppose a 3D point in the LiDAR coordi-
nate is p𝑙𝑖 and a corresponding point in the camera coordinate is
p𝑐𝑎𝑚 . The transformation from the LiDAR coordinate to the camera
one can be expressed as:

p𝑐𝑎𝑚 = Tcamvelo p𝑙𝑖 (5)

where Tcamvelo is a rigid body transformation matrix. In our experi-
ments, we add a minor rotation (within 2◦) to each rotation angle
(i.e., roll, yaw, pitch) to simulate spatial misalignment between the
camera and LiDAR.
Temporal misalignment. MSF system requires synchronization
of sensors to ensure the output from each individual branch is
sensed at the same time. In practical scenarios, sensor or trans-
mission failure may cause a delay in one branch, resulting in a
temporal misalignment [47]. To simulate temporal misalignment,
for a timestamp 𝑡𝑜 , we replace the data𝑀𝑖 (𝑡𝑜 ) with the𝑀𝑖 (𝑡𝑜 −Δ𝑡).
This could represent a signal delay of Δ𝑡 second on branch 𝑖 .

3.3 Evaluation Metrics
Our benchmarks provide specific quantitative performance evalua-
tion metrics for each perception task, including object detection,
object tracking, and depth completion. Then, we define robustness
evaluation metrics based on these metrics. Below we describe each
perception task and the corresponding evaluation metrics.

Object detection aims to locate, classify and estimate oriented
bounding boxes in the 3D space. Note that in this benchmark, we
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mainly evaluate the detection of Car objects with moderate diffi-
culty. The accuracy of object detection can be measured by IOU
(intersection over union) and AP (average precision).

IOU measures the overlap area between a ground-truth 3D
bounding box 𝐵𝑔 and a predicted 3D bounding box 𝐵𝑝 over their
union[32]. The computation of IOU can be represented as:

𝐼𝑂𝑈 =
area

(
𝐵𝑝 ∩ 𝐵𝑔

)
area

(
𝐵𝑝 ∪ 𝐵𝑔

) (6)

In our experiments evaluation, we define a successful detection as
an IOU larger than 70%.

AP is used to measure the performance of the overall detection
performance, which approximates the shape of the Precision/Recall
curve as:

AP |𝑅 =
1
|𝑅 |

∑︁
𝑟∈𝑅

𝜌interp (𝑟 ) (7)

We apply forty equally spaced recall levels [37], i.e., 𝑅40 =

{1/40, 2/40, . . . , 1}. The interpolation function is defined as:
𝜌interp (𝑟 ) = max𝑟 ′:𝑟 ′≥𝑟 ≥ (𝑟 ′), where 𝜌 (𝑟 ) gives the precision at 𝑟 .

Multiple object tracking aims to maintain objects’ identities
and track their location across data frames over time. The accuracy
is measured by MOTA (multiple object tracking accuracy) [2]:

MOTA = 1 −
∑

𝑡 (FN𝑡 + FP𝑡 + IDSW𝑡 )∑
𝑡 GT𝑡

(8)

where FNt, FPt, and IDSW𝑡 are the number of misses, of false posi-
tives, and of mismatches, respectively, during a period 𝑡 . The MOTA
can be regarded as a measurement of three different types of errors.

Depth completion aims to up-sample sparse irregular depth to
dense regular depth. The depth completion tasks focus on predicting
the distance for every pixel in the image from the viewer given
LiDAR point cloud and image data. We use the Root Mean Squared
Error (RMSE, mm) to measure the distance between the predicted
depth and ground-truth value:

𝑅𝑀𝑆𝐸 =

√√
1
𝑚

𝑚∑︁
𝑖=1

(
𝑑𝑖𝑝 − 𝑑𝑖𝑔

)2
(9)

where 𝑑𝑖𝑝 , 𝑑𝑖𝑔 are the predicted depth and ground-truth of the 𝑖th
position,𝑚 is the total number of ground-truth.

To further evaluate the robustness of different fusion mecha-
nisms across different MSF systems and tasks, we define the robust-
ness of MSF on a corruption pattern 𝑐 ∈ 𝐶 with severity 𝑠 ∈ 𝑆 as its
performance 𝑃𝑠𝑐 relative to 𝑃𝑐𝑙𝑒𝑎𝑛 (performance on clean data):

𝑅𝑏𝑠𝑐 = 𝑃𝑠
𝑐 /𝑃𝑐𝑙𝑒𝑎𝑛 (10)

where 𝑃 is measured by one of the evaluation metrics for the corre-
sponding MSF task, i.e., AP, MOTA, or RMSE 1 and 𝑐𝑙𝑒𝑎𝑛 represents
the clean data. A larger 𝑅𝑏𝑐 means that the system’s performance
against a specific corruption pattern is closer to the normal per-
formance. Then, we estimate the robustness of an MSF system by
averaging over all of the corruption patterns 𝑐 with severity 𝑠 , i.e.

𝑚𝑅𝑏 =
1
|𝑆 |

∑︁
𝑠∈𝑆

1
|𝐶 |

∑︁
𝑐∈𝐶

𝑅𝑏𝑠𝑐 (11)

A lower𝑚𝑅𝑏 means a higher risk of performance degradation when
the MSF system is deployed in the open operational environment.

1Note that we normalize the metric of each task into [0, 1].

Note that both 𝑅𝑏𝑐 and 𝑚𝑅𝑏 can generalize to different MSF
systems, tasks, and corruption patterns. In this way, we expect our
benchmark and evaluation metrics to be flexible and extensible.

3.4 Dataset
KITTI [16] is one of the most popular autonomous driving datasets,
which adopts four high-resolution cameras, a Velodyne HDL-64E
LiDAR, and an advanced positioning system to collect data from
different real-world driving scenarios. KITTI supports diverse per-
ception tasks, including 3D object detection, 3D object tracking,
depth completion, etc. During the paper collection process, we also
found that more than two-thirds of the MSF perception systems
are evaluated on KITTI. To this end, we use the KITTI as our base
dataset to construct KITTI-C to benchmark AI-enabled MSF sys-
tems’ performance and robustness. Note that, corruption patterns
used in this study can also generalize to other datasets, such as
Waymo [39] and NuScenes [5].

4 EMPIRICAL STUDY DESIGN
In this section, we introduce our research questions and experimen-
tal setup. We first investigate the robustness of existing AI-enabled
MSF systems from three perspectives: (1) against corrupted signals
(RQ1), (2) against spatial/temporal misalignments (RQ2), and (3)
against partial/complete signal loss (RQ3). Then, we investigate
the potential of repairing these MSF systems’ robustness (RQ4).

4.1 Research Questions
RQ1. How do AI-enabled MSF-based perception systems per-
form against common corrupted signals? Though a few AI-
enabled MSF perception systems have been proposed and used,
there is no systematic study on the robustness of these systems.
In this RQ, we focus on corrupted signals due to weather, sensor,
and noise corruptions (Table 2). For each corruption pattern, we
adopt three different levels of severity. Specifically, for rain and fog,
three severity levels represent 10mm/h, 25mm/h, and 50mm/h of
rainfall and 104m, 80m, and 51m of visibility, respectively. To sum
up, we conduct experiments with 231 different configurations (11
corruptions × 3 levels × 7 MSF systems) to investigate this RQ.
RQ2. How sensitive is AI-enabled MSF when facing spatial
and temporal misalignment of sensors? RQ2 aims to evaluate
the AI-enabled MSF system’s sensitivity to calibration errors. To
simulate the spatial misalignment, we rotate the LiDAR sensor
around the x, y, and z axes by 0.5◦, 1◦, and 2◦, respectively. To
simulate temporal misalignment, we create five levels of LiDAR
and camera signal delay, i.e., 0.1s, 0.2s, . . . , 0.5s, respectively. We
only investigate temporal misalignment’s effects on object tracking
systems as the other two tasks are not time-sensitive.
RQ3. To what extent are existing sensing components cou-
pled of an AI-enabled MSF system? This RQ aims to investigate
how existing AI-enabled MSF systems are coupled and if they are
robust enough against signal loss of one source of signals. To inves-
tigate this RQ, we simulate the signal loss with five different levels
(10%, 25%, 50%, 75%, 100%) of each branch. For the camera branch,
we reshape the image into a one-dimensional array and randomly



Benchmarking Robustness of AI-enabled Multi-sensor Fusion Systems: Challenges and Opportunities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(a) EPNet (b) CLOCs (c) FConv (d) JMODT

(e) DFMOT (f) TWISE (g) MDANet

Figure 4: Robustness performance of seven MSF systems against different corruption patterns.

Table 3: Average robustness performance of MSF systems against different corruption patterns across three severity levels.

Task
Weather Sensor Noise

𝑅𝑏𝑠1 𝑅𝑏𝑠2 𝑅𝑏𝑠3 mRb
RN FG BR DK DT MB DB GN(C) GN(L) IN(C) IN(L)

Object
EPNet 0.71 0.35 0.92 0.83 0.98 0.90 0.88 0.98 0.71 0.98 0.79 0.90 0.84 0.72 0.82
FConv 0.81 0.43 0.96 0.84 0.96 0.66 0.73 0.66 0.92 0.66 0.92 0.93 0.82 0.58 0.78
CLOCs 0.69 0.41 0.97 0.85 0.99 0.70 0.76 0.67 0.85 0.68 0.95 0.92 0.83 0.58 0.77

Tracking
JMODT 0.79 0.26 0.92 0.75 0.97 0.88 0.81 0.86 0.81 0.86 0.94 0.89 0.82 0.70 0.80
DFMOT 0.84 0.41 0.95 0.77 0.98 0.54 0.57 0.59 0.95 0.60 0.99 0.92 0.78 0.54 0.75

Depth
TWISE 0.56 0.05 0.99 0.88 0.94 0.94 0.93 0.95 0.95 0.95 0.98 0.87 0.83 0.79 0.83
MDANet 0.62 0.14 0.99 0.86 0.92 0.92 0.90 0.49 0.96 0.46 0.98 0.89 0.72 0.64 0.75

Avg 0.72 0.29 0.96 0.83 0.96 0.79 0.80 0.74 0.88 0.74 0.94 0.90 0.81 0.65 0.67

drop pixels. For the LiDAR branch, we randomly remove points
with different percentages.
RQ4.What is theweakness of differentAI-enabledMSFmech-
anisms and is it possible to repair them? RQ4 aims to inves-
tigate the properties of different fusion mechanisms, and analyze
the weakness or potential threats of each based on the experiment
results from RQ1-3. We first divide MSF systems into three cate-
gories according to their fusion mechanisms. To further investigate
the possibility of repairing MSF systems, we make an early attempt
on enhancing MSF systems’ robustness by improving the fusion
mechanism of late and weak fusion.

4.2 Experimental Setup
In experiments, we use Second [46] as the LiDAR branch for CLOCs
and DFMOT, Cascade-RCNN [6] as the camera branch for CLOCs,
DFMOT, and FConv. We implement all MSF systems with PyTorch
1.8 and Python 3.7. For each system, we use default configurations
to ensure a consistent runtime environment. Table 1 shows the

performance of each reproduced system. The detailed settings of
each system can be found in supplementary website [15]. All exper-
iments are conducted on a server with an Intel i7-10700K CPU (3.80
GHz), 48 GB RAM, and an NVIDIA RTX 3070 GPU (8 GB VRAM).

5 EXPERIMENTAL RESULTS
5.1 RQ1. AI-enabled MSF is not robust against

corrupted signals.
Fig. 4 summarizes the robustness benchmark results for seven AI-
enabled MSF perception systems against eleven corruption patterns
via radar charts. Each axis in the figure represents the robustness
score 𝑅𝑏𝑠𝑐 against corruption 𝑐 with severity level 𝑠 . These results
reveal that all the selected AI-enabled MSF systems have robustness
issues against corrupted signals, while their robustness properties
could be varied. For instance, all the selected systems perform
poorly against fog (FG) corruption. However, for the blur effects
(MB, DB), some systems perform relatively robust (e.g., EPNet,
TWISE, JMODT), while some face severe robustness issues (e.g.,
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Table 4: Robustness performance of MSF systems against
spatial misalignment.

Axis EPNet FConv CLOCs JMODT DFMOT TWISE MDANet

X
0.5° 0.93 0.92 0.96 0.98 0.99 0.94 0.94
1° 0.80 0.79 0.83 0.94 0.99 0.82 0.83
2° 0.46 0.48 0.57 0.80 0.72 0.57 0.58

Y
0.5° 0.45 0.41 0.41 0.93 0.84 0.73 0.77
1° 0.09 0.04 0.04 0.54 0.75 0.16 0.34
2° 0 0 0.06 0 0 0 0

Z
0.5° 0.93 0.92 0.96 0.98 0.99 0.94 0.94
1° 0.80 0.79 0.83 0.95 0.99 0.82 0.83
2° 0.44 0.48 0.56 0.80 0.72 0.57 0.59

Avg 0.54 0.54 0.58 0.77 0.77 0.62 0.65

CLOCs, FConv, DFMOT). To further analyze how different MSF
systems perform against different categories of corrupted signals,
we interpret the detailed robustness performance in Table 3 by
presenting the average performance against each corruption pattern
across three severity levels.

Weather Corruption. As shown in Table 3, weather corrup-
tions pose significant robustness issues for MSF systems, where the
average robustness score against rain (RN) and fog (FG) are 0.72 and
0.29, respectively. We also find that the depth completion systems
(i.e., TWISE, MDANet) hardly work on foggy days. Specifically, the
highest robustness score among depth completion systems is only
0.14. Besides, decreasing brightness affects MSF systems more sig-
nificantly compared with increasing brightness, where the average
robustness scores are 0.83 and 0.96, respectively.

Sensor Artifact. While all the MSF systems are relatively ro-
bust against distortion (robustness score higher than 0.9), some of
them (i.e., FConv, CLOCs, DFMOT) particularly have significant
performance degradation against blur effects (MB, DB). We further
qualitatively check the image signals corrupted by distortion (DT)
and find that only the edges of images are distorted. This could be
one possible reason that the effects of DT are limited.

Noise Corruption. As shown in Table 3, camera signals cor-
rupted by noise patterns are usually more vulnerable in MSF sys-
tems, where the robustness score against noises in cameras (74.4
(GN), 74.2 (IN)) are lower than those in LiDAR (87.9 (GN), 89.6 (IN)).
Based on these observations, adding appropriate filters for image
signals could be important for designing robust AI-enabled MSF.

Answer to RQ1: Existing AI-enabled MSF systems are not
robust enough against common corruption patterns. Moreover,
among the 11 common corruptions, adverse weather causes the
most severe robustness degradation.

5.2 RQ2. AI-enabled MSF is sensitive to sensor
misalignment.

Through our investigation of RQ2, we find that AI-enabled MSF
systems are sensitive to both spatial and temporal misalignment.

Spatial misalignment. Table 4 shows the experimental results
of spatial misalignment, where each cell represents the robustness
score. According to the average robustness score across different
rotation axes and angles (last row of Table 4), we can find that spatial

(a) Clean (b) X-axis (c) Y-axis (d) Z-axis

Figure 5: An example of a 2◦ rotation error in calibration
around X-, Y-, and Z-axes.

Figure 6: Robustness performance of MSF systems against
temporal misalignment.

misalignment significantly affects MSF’s robustness. Specifically,
the highest average robustness score among the seven systems is
lower than 0.78. We also find that MSF systems of different tasks
could have different sensitivity regarding spatial misalignment. For
instance, the robustness scores of object detection systems (i.e.,
EPNet, FConv, CLOCs) are relatively lower than object tracking
and depth completion systems.

In addition, we also find that MSF systems are more sensitive to
rotation around Y-axis. When the rotation angle around Y-axis is
increased to 2◦ (highlighted in Table 4), five out of seven systems
crash (robustness score is 0), while the other two also have poor
performance. By contrast, there is no such dramatic decrease for ro-
tations around X- and Z-axes. We qualitatively compare the effects
of 2◦ rotation around different axes by projecting the point cloud
onto the image in Fig. 5. A 2◦ rotation around Y-axis results in a
significant malposition between the image and point cloud, which
possibly leads to the system crash.

Temporal misalignment. Fig. 6 shows the effects of temporal
misalignment on AI-enabled MSF systems for object tracking (i.e.,
JMODT, DFMOT). As we can observe from Fig. 6, both the cam-
era and LiDAR branch are sensitive to the delay. When the delay
increases, the robustness score of the MSF system decreases. In
particular, we find that LiDAR is more sensitive (solid lines in Fig. 6)
to the delay. When the delay of LiDAR increases to 0.3 seconds, the
robustness score of JMODT and DFMOT drops nearly 60% (from 1.0
to 0.4). In contrast, the same level delay of the camera only drops
their robustness performance by 10%∼20%.
Answer to RQ2: AI-enabled MSF perception systems are sensi-
tive to both temporal and spatial misalignment, especially for
LiDAR. Even small synchronization (0.3 seconds) and calibration
errors (2◦) can lead to a crash of AI-enabled MSF systems.
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(a) Object Detection (b) Object Tracking (c) Depth Completion

Figure 7: MSF systems’ performance when partially losing one source of the signals.

5.3 RQ3. Tightly-coupled AI-enabled MSF could
be less robust.

When deploying an AI-enabled MSF system, developers might ex-
pect it to be reliable even if one of the signals is lost. However,
our experiments demonstrate that AI-enabled MSF systems are less
robust as they crash when they partially or completely lose a source
of signals. Fig. 7 shows the robustness of different MSF systems
with different severity levels of signal loss. These results suggest
that partially losing either camera or LiDAR signal could affect the
MSF system’s performance, while losing the camera signal could be
more critical (dashed-line in Fig. 7). Specifically, we find that losing
the camera signal significantly affects 6 out of 7 systems (except
EPNet) compared with losing the LiDAR signal. When losing 75% of
the camera signal, 4 out of 7 selected systems have a low robustness
performance (𝑚𝑅𝑏 smaller than 0.2). These results also suggest that
existing MSF systems heavily depend on camera signals.

To further investigate AI-enabled MSF systems’ robustness
against signal loss, Table 5 shows the robustness performance of
these systems when completely losing one source of the signal. We
can find that when losing LiDAR signals, all of the systems crash.
When losing camera signals, 3 out of 7 systems also crash and 2
systems have poor performance (e.g., EPNet, JMODT). Surprisingly,
we find that MDANet does not crash when completely losing the
camera signal, however, it crashes when losing partial signals (see
Fig. 7c). One possible explanation is that due to the sparsity of
objects in the image data, discarding 50% or 75% pixels could have
dropped all the valuable information (e.g., pixels including objects).
The remaining pixels, instead, could bring interference to the MSF
system and thus lead to the system crash.

Answer to RQ3: AI-enabled MSF systems could be vulnerable
when partially or completely losing one source of signals, even
if the other source is working properly. In particular, partially
losing camera signals could be more critical for AI-enabled MSF
systems. We also find that though tightly-coupled AI-enabled
MSF systems have promising performance, they could be less
robust when completely losing either camera or LiDAR signals.

5.4 RQ4. Fusion mechanisms could affect
AI-enabled MSF’s robustness and reliability.

While there is no systematic evidence indicating that one specific
fusion mechanism is the most robust and reliable, we particularly

Table 5: MSF systems’ performance when completely losing
one source of the signals.

Modality EPNet FConv CLOCs JMODT DFMOT TWISE MDANet
C 0.23 0 0 0.13 0 0.50 0.58
L 0 0 0 0 0 0 0

Figure 8: Improved AI-enabled MSF mechanisms.

find that different fusion mechanisms may have unique advantages
and potential threats due to their inherent properties. According to
our findings from RQ1, three deep fusion MSF systems (i.e., EPNet,
JMODT, TWISE) are more robust against blur images (MB, DB) and
noise patterns (IN(C), IN(L)) than others (Table 3). According to
our finding from RQ3, these systems also perform robustly when
partially losing camera signals (Fig. 7). Two late fusion MSF systems
(i.e., ClOCs, DFMOT) show similar trends against corrupted signal
(RQ1) and signal loss (RQ3). To further investigate the effect of the
fusion mechanism on the robustness, we try to repair the badly
performed late- and weak-fusion MSF system based on the inherent
properties of different fusion mechanisms.

To improve the late fusion, we leverage a shortcut between the
LiDAR branch and the fusion layer to enhance the MSF robustness
(left part of Fig. 8). Specifically, we design a matching method to
aggregate high confidence and unique results from an individual
branch to the fusion results. This is motivated by our findings in
RQ1 and RQ3, where the camera is more susceptible to external
environmental interference.

Weak fusion uses a cascade architecture to connect two modules
in series. Its robustness performance bottleneck is due to inac-
curate/missing guidance signals. Therefore, for weak fusion, we
leverage a neural network to extract extra guidance from another
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(a) CLOCs (b) FConv

Figure 9: Performance of the original and enhanced MSF.

Table 6: Improved performance of CLOCs-Rb and FConv-Rb
against partial or complete signal loss.

Systems Modality 10% 25% 50% 75% 100% Avg

CLOCs-Rb
C -0.01 0.07 0.41 0.86 0.94 0.45
L -0.01 -0.01 0.00 -0.01 0 0.00

FConv-Rb
C 0.00 0.10 0.52 0.86 0.99 0.49
L 0.00 0.00 0.00 0.00 0 0.00

modality and connect it to the downstream module as an additional
guidance branch (right part of Fig. 8). Specifically, we first train a
2D detector by projecting the point cloud to 2D front view images.
Then we use the detecting results from the 2D front view as an
extra guidance input.

To evaluate the effectiveness of improved fusion mechanisms,
we choose CLOCs and FConv as late and weak fusion systems and
conduct the same experiments in RQ1 and RQ3. Fig. 9 shows the
performance against corruptions of original MSF and enhanced
MSF. We find that the enhanced MSF systems are significantly
more robust against common corruption patterns. Furthermore,
Table 6 shows the improved performance (𝑅𝑏 − 𝑅𝑏, where 𝑅𝑏 and
𝑅𝑏 are robustness score with/without improved fusion mechanisms,
respectively) against signal loss. We find that enhanced CLOCs
(CLOCs-Rb) and FConv (FConv-Rb) show promising robustness
performance against partial and even complete image signal loss.
For instance, when the camera signal is completely lost (100% in
Table 6), the proposed robustness enhancement strategy almost
fully recovers the MSF systems’ performance (highlighted in red in
Table 6).

Answer to RQ4: MSF systems with the same type of fusion
mechanisms may have similar robustness issues due to their
inherent properties. Deep fusion performs better against some
of the corruption patterns. However, weak fusion and late fusion
are easier to be repaired when facing specific robustness issues.

6 DISCUSSION
Discussions. According to our findings from RQ1-3, existing AI-
enabled MSF systems are not robust enough. First, corrupted signals
could result in significant performance degradation of AI-enabled

MSF systems. The data-driven nature makes it challenging to train a
robust MSF system that satisfies safety and reliability requirements
under all conditions. Therefore, more research on the continuous
enhancement of AI-enabled MSF is needed, such as debugging and
repair. Our findings from RQ2 also reveal that AI-enabled MSF
systems are sensitive to calibration and synchronization errors. In
the real world, these two types of errors commonly exist. Even
well-calibrated sensors can still be misaligned due to the changes in
external environments. To deploy a reliable AI-enabled MSF system,
developers must address the calibration issues carefully.

Modular redundancy is a critical way to improve system quality
and reliability [13, 14]. By coupling multiple sensors, AI-enabled
MSF systems are expected to be robust against signal loss from
one specific sensor. However, our experimental results suggest
that existing work usually ignores taking this into account when
designing AI-enabled MSF, resulting in a lack of robustness. Thus,
future work should consider designing AI-enabled MSF systems
that can still be reliable with one or more sources of signal loss.

Though existing AI-enabled MSF systems are not robust enough,
we also find it possible to repair them with fusion mechanisms
improvements. In Sec. 5.4, we propose a potential repairing strat-
egy to repair weak and late fusion mechanisms. The experimental
results demonstrate their effectiveness, showing that improving
fusion mechanisms could be a promising research direction.
Future Directions. Based on these insights, we summarize the
following future directions:
• In this work, we focus on AI-enabled MSF perception systems.
However, MSF can also be used in systems beyond perception
and autonomous driving. Therefore, more comprehensive bench-
marks and more fine-grained robustness evaluation metrics for
AI-enabled MSF systems can be considered in the future.

• There is an urgent need for robustness enhancement techniques
to continuously improve the reliability of AI-enabled MSF sys-
tems. Based on our investigation results, improving fusion mech-
anisms to repair MSF systems could be a promising research
direction.

• Different fusion mechanism-based MSF systems show different
robustness issues. Therefore, practical software and system en-
gineering approaches (e.g., testing, debugging, formal analysis,
and repairing) would be needed for different MSF systems.

Threats to Validity. In terms of construct validity, ideally, it would
be highly desirable to expose to diverse and as many corruption
datasets as possible, to better approximate the robustness perfor-
mance of MSF systems. Besides, randomness could also affect the
process of synthesizing corrupted data. Therefore, we try our best
and adopt a large-scale systematic corrupted dataset (across thir-
teen corruption patterns and multiple severity levels) to comprehen-
sively measure and analyze the robustness and reliability of MSF
in our benchmark. Even though, the robustness results might still
not generalize to cases of more diverse types of corruption patterns
that are not evaluated in this paper. In terms of internal validity,
one potential threat is that the leveraged weather corruption may
differ from real-world weather. To mitigate this threat, we choose
the domain-specific physical model to simulate the properties of
adverse weather for different sensors. Further, we ensure that dif-
ferent sensors are sensing identical environments by controlling
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the hyperparameters in the physical model. In terms of external
validity, one potential threat is that our analysis results may not
be generalized to other MSF systems. To mitigate this threat, we
try our best to collect a diverse set of MSF systems with different
perception tasks, model structures, and fusion mechanisms.

7 RELATEDWORKS
Multi-sensor Fusion. A pioneering work of AI-enabled MSF is
MV3D [8]. MV3D takes multi-view representations (i.e., front-view
and bird’s eye view) of 3D point clouds and images as input and uses
a deep fusionmechanism to combine region-wise features frommul-
tiple views. To avoid information loss in generating view through
perspective projections, EPNet [21] proposes a LiDAR-guided Im-
age Fusion (LI-Fusion) module that enables the interaction between
the hidden features of the point cloud and image data to improve
system performance. CLOCs [33] is another representative work
of late fusion, which leverages geometric and semantic consisten-
cies of 2D and 3D output candidates to produce more accurate
final detection results. One of the early works of weak fusion is
F-PointNets [35], which uses 2D bounding boxes as guidance to
extract frustum in the point cloud and then estimate 3D bounding
boxes. FConv [44] extends the F-PointNets by proposing a sliding
frustums method to aggregate local point features into frustum-
level feature vectors to achieve end-to-end prediction. However,
few benchmarks are available to measure the robustness and relia-
bility of these well-designed MSF systems in open environments
with corrupted/misaligned sensor signals.
Robustness Benchmarks. Several specific robustness benchmarks
designed for one data modality have been proposed. ImageNet-
C [18] evaluates the robustness of image specific recognition mod-
els against several corruptions. Cityscapes-C [30] extends this
ImageNet-C to 2D object detection. However, the weather corrup-
tion in ImageNet-C and Cityscapes-C is not guaranteed to respect
the underlying physics of weather conditions. Moreover, Mirza et
al. [31] evaluate the performance of autonomous driving systems
under image data collected in real weather conditions. However,
they do not provide a benchmark of LiDAR-based sensing mod-
ules against adverse weather conditions. Inspired by ImageNet-C,
ModelNet40-C [38] measures the performance of 3D point cloud
recognition models. However, these corruptions can only be applied
to object-level point clouds instead of open scenes. None of these
existing works has focused on benchmarking MSF systems with
corrupted data from multiple different modalities. Our benchmark
is thus proposed to address this.
MSF Testing and Attack. Zhong et al. [49] propose an
evolutionary-based search framework to detect fusion errors for
advanced driver assistance systems. Our work is parallel to them,
which is to establish a general benchmark rather than testing a
specific system. In addition, some recent work has investigated
how to attack AI-enabled MSF systems [1, 7, 27, 40]. Cao et al. [7]
and Tu et al. [40] attack all branches of MSF systems by inserting
adversarial objects. Abdelfattah et al. [1] and Liu et al. [27] investi-
gate attacks on weak fusion and deep fusion systems, respectively.
In contrast, our benchmark aims to evaluate the robustness of the
MSF systems against common real-world corruptions instead of
artificial adversarial objects or perturbations.

8 CONCLUSION
In this paper, we present an early public robustness benchmark
of AI-enabled MSF systems, which can further be used as a funda-
mental evaluation and testing framework for understanding MSF
systems’ limitations and potential risks. We further perform large-
scale robustness evaluation on seven MSF systems against different
corruption patterns including corrupted signals, sensor misalign-
ment, and signal loss. Our findings reveal that existing AI-enabled
MSF are usually tightly-coupled and not robust enough. Thus, we
make an early attempt to enhance the MSF system’s robustness by
improving fusion mechanisms. Finally, we present discussions and
highlight several possible future directions in order to build robust
and reliable MSF systems with the emergence of AI.
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