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ABSTRACT

Multi-Sensor Fusion (MSF) based perception systems have been
the foundation in supporting many industrial applications and
domains, such as self-driving cars, robotic arms, and unmanned
aerial vehicles. Over the past few years, the fast progress in data-
driven artificial intelligence (AI) has brought a fast-increasing trend
to empower MSF systems by deep learning techniques to further
improve performance, especially on intelligent systems and their
perception systems. Although quite a few Al-enabled MSF percep-
tion systems and techniques have been proposed, up to the present,
limited benchmarks that focus on MSF perception are publicly avail-
able. Given that many intelligent systems such as self-driving cars
are operated in safety-critical contexts where perception systems
play an important role, there comes an urgent need for a more
in-depth understanding of the performance and reliability of these
MSF systems.

To bridge this gap, we initiate an early step in this direction and
construct a public benchmark of Al-enabled MSF-based perception
systems including three commonly adopted tasks (i.e., object detec-
tion, object tracking, and depth completion). Based on this, to com-
prehensively understand MSF systems’ robustness and reliability,
we design 14 common and realistic corruption patterns to synthe-
size large-scale corrupted datasets. We further perform a systematic
evaluation of these systems through our large-scale evaluation and
identify the following key findings: (1) existing Al-enabled MSF
systems are not robust enough against corrupted sensor signals; (2)
small synchronization and calibration errors can lead to a crash of
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Al-enabled MSF systems; (3) existing Al-enabled MSF systems are
usually tightly-coupled in which bugs/errors from an individual
sensor could result in a system crash; (4) the robustness of MSF sys-
tems can be enhanced by improving fusion mechanisms. Our results
reveal the vulnerability of the current Al-enabled MSF perception
systems, calling for researchers and practitioners to take robust-
ness and reliability into account when designing Al-enabled MSF.
Our benchmark, code, and detailed evaluation results are publicly
available at https://sites.google.com/view/ai-msf-benchmark.

CCS CONCEPTS

« Software and its engineering — Software defect analysis; «
General and reference — Empirical studies.

KEYWORDS

Multi-Sensor Fusion, Benchmarks, Al Systems, Perception Systems

ACM Reference Format:

Xinyu Gao, Zhijie Wang, Yang Feng, Lei Ma, Zhenyu Chen, and Baowen Xu.
2023. Benchmarking Robustness of Al-enabled Multi-sensor Fusion Systems:
Challenges and Opportunities. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE "23), December 39, 2023, San Francisco, CA, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3611643.3616278

1 INTRODUCTION

Multi-sensor fusion (MSF) refers to the technique that combines
data from multiple sources of sensors to achieve specific tasks,
which has been widely adopted in many real-world complex sys-
tems. The integration of information from different sensors avoids
the inherent perception limitations of individual sensors and im-
proves the system’s overall performance. Over the past years, MSF-
based perception systems have been widely used in various indus-
trial domains and safety-critical applications, such as self-driving
cars [24], unmanned aerial vehicles [36], and robotic systems [29].

With recent advances in data-driven artificial intelligence (AI),
there comes an increasing trend in proposing deep learning (DL)
techniques to further enable more advanced heterogeneous data
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processing from different sensors, in order to achieve more accurate
perception and prediction. Given the advantage of deep neural
networks (DNNs) in processing and extracting complex semantic
information from sensors’ data (e.g., image, point cloud), Al-enabled
MSF has been increasingly adopted in the perception systems of
autonomous driving [24, 36].

The rapid development of Al-enabled MSF systems also brings
challenges and concerns. One of the biggest concerns is the lack of
a deep understanding of the current Al-enabled MSF’s reliability.
In practice, an Al-enabled MSF system could behave incorrectly
and lead to severe accidents in safety-critical contexts, especially
in autonomous driving [10, 51]. Thus, it is highly desirable to en-
able testing, analysis, and systematic assessment of such intelligent
systems beforehand comprehensively. One common practice to
enable such quality assurance activities in AI/SE communities is to
establish a benchmark that enables both researchers and practition-
ers to perform systematic studies and develop novel techniques to
better fulfill important quality requirements. However, to the best
of our knowledge, up to the present, few benchmarks specifically
designed for Al-enabled MSF are yet available. It is unclear whether
and to what extent the potential quality issues and risks can be, how
they are brought from each sensing unit, and their impacts on the
integration and the state-of-the-art information fusion processes.

To bridge this gap, in this paper, we initiate an early step to
present a benchmark and perform an empirical study of Al-enabled
MSF perception systems. Fig. 1 summarizes the high-level design
and workflow of our benchmark construction and our empirical
study, in which we mainly investigate the following research ques-
tions, aiming to identify the potential challenges and opportunities:

e RQ1. How do Al-enabled MSF-based perception systems
perform against common corrupted signals? This RQ aims
to investigate the potential risks of Al-enabled MSF systems
against corrupted signals that commonly occur in the operational
environments. Through a large-scale evaluation on eleven types
of corrupted sensor signals, we find that the current Al-enabled
MSF systems are not robust enough, especially against weather
condition changes.

e RQ2. How sensitive is Al-enabled MSF when facing spatial
and temporal misalignment of sensors? In the practical open
and wild environment, it is almost impossible to always main-
tain perfect calibration or precise time synchronization of the
system across sensors. RQ2 aims to investigate the sensitivity
of Al-enabled MSF to spatial and temporal misalignment. Our
experiment results reveal that even small calibration or synchro-
nization issues could lead to abnormal behaviors of the system.

e RQ3. To what extent are existing sensing components cou-
pled of an Al-enabled MSF system? A robust and reliable
MSEF should not completely fail when one or a part of the whole
sensing modules lose the source signal. RQ3 aims to investigate
how Al-enabled MSF systems can be impacted when one source
of the signal is partially/completely lost. Overall, we find that the
tightly-coupled architecture of Al-enabled MSF systems exhibits
less robustness against signal loss.

o RQ4. What is the weakness of different AI-enabled MSF
mechanisms and is it possible to repair them? RQ4 aims
to investigate the unique advantages of each fusion mechanism
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and potential opportunities for improving the robustness of Al-
enabled MSF systems. Our results demonstrate that deep fusion
is more robust in some cases, however, weak and late fusion can
be easier to be repaired in terms of robustness against corruption
patterns.

To sum up, this work makes the following contributions:

e Benchmark. We initiate to create an early public benchmark
of Al-enabled MSF-based perception systems. This provides a
common ground for the study and analysis of Al-enabled MSF sys-
tems’ robustness and enables future quality assurance research
in this direction.

e Empirical Study. Based on the benchmark, we perform a large-
scale empirical study of Al-enabled MSF systems to investigate
their current status regarding robustness.

e Discussion. We further make discussions about existing Al-
enabled MSF systems and future directions, including the unique
advantages of different fusion mechanisms as well as the oppor-
tunities of their robustness enhancement.

To the best of our knowledge, this paper is among the very early
research to benchmark and investigate the MSF system, which is a
common and representative Al system composed of multiple sens-
ing channels and corresponding models. On one hand, at present, it
is not clear how much and to what extent each sensing unit could
impact the integrated sensing results of an MSF; it is not clear how
the issues of different sensing units and channels are involved and
propagate to the final results of different MSF designs either. Creat-
ing a benchmark at the current stage enables to investigate these
important questions quantitatively, which also enables further rele-
vant quality assurance research along this direction. On the other
hand, in general, MSF-based perception systems play a key role to
enable autonomous and intelligent systems, which potentially has
a big impact on many applications and domains. With the recent
fast pace in transforming into the data-driven intelligent era, we
believe an early stage benchmark and investigation of the current
MSF systems empowered by deep learning would also benefit the
practitioners in understanding the limitation and proposing better
MSF engineering techniques, paving the path towards designing
safe and reliable autonomous intelligent systems.

2 BACKGROUND

2.1 Perception Systems in Intelligent Systems

Anintelligent system (e.g., a self-driving car, a robotic, an unmanned
aerial vehicle) is usually a complex system composed of various
subsystems. These subsystems are cooperated to ensure safe and
reliable operations of the intelligent system. The perception system
is one of the key components in an intelligent system, which is
in charge of sensing and processing environmental information
through sensors to perform crucial tasks, e.g., object detection and
object tracking. The prediction results from perception systems are
then propagated to other components in the intelligent system such
as planning and control systems. The perception systems lay the
foundation of the intelligent system’s workflow in perceiving and
understanding the environment, which also significantly impact
the quality and reliability of the whole system.
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Figure 1: Workflow summary of Al-enabled MSF benchmark construction, and high-level empirical study design.

Most industrial-level systems leverage multi-sensor fusion (MSF)
strategy to avoid inherent perception limitations of individual sen-
sors and thus sense the environment more reliably [34]. For instance,
the camera and LiDAR are usually fused in self-driving cars since
camera is more effective in capturing semantic information and
LiDAR could provide more accurate geographic information [9].
As shown in Fig. 1 (right part), each sensor in a camera-LiDAR
fusion first senses the surrounding environment individually. Then,
signals from different sensors are transformed into the same co-
ordinate system and matched across the timestamps based on the
temporal and spatial calibration among sensors. Finally, the fusion
module receives calibrated and synchronized signals from different
sensors, and fuses them to make predictions for downstream tasks.

2.2 Al-enabled Multi-Sensor Fusion

Different from traditional MSF that only fuses the data or output,
Al-enabled MSF also has the possibility to fuse the deep semantic
features learned by DNNs. We take the fusion of camera and LiDAR
as an example (right part of Fig. 1) in the following sections.

Each branch that processes signals in Al-enabled MSF can be
represented as a composite function chain (Eq. 1) that maps the
input data "" to the output result 5 '

5'= (D (=D Oy @

where ! denotes the depth of a branch. The medium output in the
chain,ie, V() 9={12
9th hidden layer in a DNN.

Based on the stage where the fusion is made [12, 20] (see Fig. 2),
Al-enabled MSF can be categorized into four different mechanisms
at a high level: early fusion, late fusion, deep fusion, and weak fusion.
Since early fusion is not commonly used in Al-enabled MSF, we
focus on the other three fusion mechanisms in the rest of this paper.
For a ! layer deep neural network, we denote ""s and ""y as two
different modalities and define & as a fusion operation. Now we
briefly introduce each MSF mechanism.

Late fusion directly combines the output results of each branch,
which can be formulated as:

st= MO0
o V{0

I — 1}, represents the output from
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Figure 2: Different Al-enabled MSF mechanisms.

Each branch in late fusion process data from sensors indepen-
dently and does not depend on specific network architecture. Com-
pared with other fusion mechanisms, late fusion is highly flexible.
For instance, late fusion can easily combine image-based object de-
tectors and LiDAR-based ones. Late fusion does not involve hidden
feature interaction, which also leads to higher efficiency.

Deep fusion involves frequent interactions among hidden fea-
tures from different branches to gain rich semantic information.
Suppose that the depth of branch § is greater than that of branch 9,
when only one feature fusion is performed, the deep fusion can be
formulated as:

sh= W (WMD)

o " O
where !8* , !a‘ denotes that the fusion starts from 8th and 9th hidden
layers, respectively.

Weak fusion does not fuse the hidden features nor fuse the
output results. Instead, weak fusion adopts rule-based methods to
transform data from one branch to guide the process of data in
another branch. The process of weak fusion can be described as:

st= WO OC et @)
where G is the function that extracts the guidance from branch 8.
One typical example of weak fusion is extracting the frustums in

the point cloud data using the 2D detection bounding boxes from
the image as guidance [35, 44].
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Table 1: The collected MSF systems. Performance of each sys-
tem is evaluated by task-speci ¢ metrics (detailed in Sec. 3.3).

System Task Fusion Year Modality Performance
EPNet [21] Object Detection Deep 2020 C+L 82.70
FConv [44] Object Detection ~ Weak 2019 C+L 79.06
CLOCs [33] Object Detection Late 2020 C+L 79.70
JMODT [19] Object Tracking Deep 2021 C+L 86.12
DFMOT [43] Object Tracking Late 2022 C+L 80.17
TWISE [22] Depth Completion Deep 2021 C+L 1009.64
MDANet [25] Depth Completion Deep 2021 C+L 898.39

3 BENCHMARK CONSTRUCTION

3.1 Benchmark Collection

To collect as many appropriate Al-enabled MSF perception systems
as possible for our study, we mainly focus on two sources: (1) the
leaderboard of KITTI benchmarkif, and (2) existing MSF-related
literature. KITTI is a public autonomous driving benchmark that in-
volves several di erent perception tasks. For MSF-related literature,
we collect papers published in relevant top-tier conferences and
journals during the last four years, covering software engineering,
robotics, computer vision, etc. We refer readers to our supplemen-
tary website [LH for a complete list of selected venues. Eventually,

we selected 7 state-of-the-art MSF systems from these two sources

based on the following criteria:

Multi-sensors . An MSF system should involve two or more
types of di erent sensors.

Open-source. An MSF system should be open-source so that
we can conduct experimental evaluations and enable further
replication studies.

Data available. An MSF system should have open-source data
for training and evaluation.

Representative task. An MSF system should be designed for
representative perception tasks with real-world applications, e.g.,
object detection.
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Table 2: Corruption patterns used in this study.

Category Corruption Modality
Rain (RN) Camera & LIDAR
Weather Fog (FG) Camera & LIDAR
Corruption Brightness (BR) Camera
Darkness (DK) Camera
Distortion (DT) Camera
Motion Blur (MB) Camera
Defocus Blur (DB) Camera
Sensor . .
. Image Gaussian Noise (GN) Camera
Corruption . . . .
Point Cloud Gaussian Noise (GN LIDAR
Image Impulse Noise (IN) Camera
Point Cloud Impulse Noise (IN) LiDAR
Sensor Spatial Misalignment (SM) Camera & LIDAR

Misalignment Temporal Misalignment (TM) Camera & LiDAR

feasible. To address these, we collect and design thirteen corruption
patterns (Table 2) to synthesize corrupted signals for MSF systems,

which can be grouped into three categories: (1) weather corruption,

(2) sensor corruption, and (3) sensor misalignment. Weather cor-
ruptions represent the external environment changes of an MSF
system, e.g., rainy/foggy days and bright/dark light conditions for

a self-driving car, a UAV, etc. Sensor corruptions re ect the internal
environment changes of an MSF system, such as transmission noise.
Sensor misalignment is speci cally designed for MSF systems given
that the fusion of di erent signals requires accurate temporal and
spatial calibration. Now we brie y introduce each category.

3.2.1 Weather CorruptiohVeather conditions are an important
factor that can inevitably a ect the sensor's perception in the open
environment, resulting in the performance degradation of MSF
systems. For example, normal cameras could hardly perceive the
surroundings at night. In this work, we leverage weather corruption

Table 1 summarizes the seven MSF systems selected in our benchPatterns from two perspectives: (1) light conditions change, and (2)

mark. These seven systems cover three di erent tasks and three
di erent fusion mechanisms. Due to the page limit, we refer audi-
ences to our supplementary websitéH for details of each MSF
system.

3.2 Corruption Patterns

Operational environments of many MSF systems are usually open
with unexpected condition changes compared with environments
during the design phase. Such environment changes are more crit-
ical to Al-enabled MSF systems due to the data-driven nature of
ML and DL. For instance, an autonomous driving system's object
detector might be trained with data only collected from sunny
days. While the autonomous driving system is expected to be safe
and reliable during rainy days, however, it is hard to determine to
what extent the system can handle such a weather change. That
is, the weather change in the open environment could result in
corrupted sensor signals, leading to potential distribution changes
of data that a ect an MSF system's performance. To evaluate an
MSF system's performance against such operational environments'
changes, collecting and labeling real-world data is ideal but not

adverse weather conditions.

Lighting conditions . The camera is sensitive to lighting condi-
tions, variations in daylight and road illumination can easily a ect
the image quality, while lighting conditions' e ects on LiDAR are
limited [17]. Therefore, we mainly focus on adjusting tHeight-
ness (BR)anddarkness (DK) of the image pixels.

Weather conditions . Adverse weather can cause asymmetric mea-
surement distortion of sensors, which poses a signi cant challenge
for MSF perception systems that rely on redundant information. For
example, on rainy days, raindrops could lead to pixel attenuation
and rain streaks on the image, meanwhile, the droplets will make
the laser scattering and absorption, resulting in a lower intensity
of points and perceived quality of LIiDAR.

In our benchmark, we choose the domain-speci ¢ physical model
to simulate the properties of two representative adverse weather, i.e.,
rain (RN) andfog (FG). Speci cally, we adopt rain model described
in [17] and fog model described ir?[j for camera, and rain/fog
model described ing€ for LIDAR. Another critical problem when
designing rain or fog corruptions is ensuring di erent sensors are
sensing identical environments, e.g., the camera and LiDAR are
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(a) Fog

(b) Rain

Figure 3: Feature visualization of simulated rain/fog by T-SNEs.

both sensing a rain of 10mm/h. To address this, we control the
environmental parameters in LIDAR and camera model to ensure
the consistency of the rain's volumes or fog's maximum visibility.

Realisticness validation of Rain and Fog corruption . To
validate the naturalness of rain and fog corruptions, we train
deep fusion-based classi ers to distinguish real rain/fog scenes
from clean scenes using datasets collected from real rainy/foggy
weather [3, 4]. Then, we use these trained classi ers to make predic-
tions on simulated data to measure the similarity between simulated
and real data. We retrain each classi er ve times and take the aver-

of lenses §§. Note that, as an early attempt, we only consider
artifacts of camera sensors. We leave artifacts of LiDAR sensors,
e.g., one of LIiDAR's beams is broken, as the future work.

3.2.3 Sensor MisalignmeWell-calibrated and synchronized sen-
sors are a prerequisite for MSF-based perception systems. However,
it is not easy to guarantee the perfect alignment of sensors in the
real world [17]. Therefore, we design two corruption patternSpa-

tial misalignment (SM) and Temporal misalignment (TM) , to
simulate the misalignment between the camera and LiDAR.

aged accuracy. The average classi cation accuracy of these trained SPatial misalignment . MSF system requires an external calibra-
weather classi ers is 98.6% and 98.0% on simulated fog/rain data.tion of each sensor during the assembly process to ensure that

These results con rm that the simulated fog/rain data are highly
similar compared to the real data.

We further analyze the similarity between the semantic features'
distribution of real and simulated data. Speci cally, we extract the
high-level semantic features from the trained classi er. Then, we
utilize T-SNE f1] to reduce the dimensionality of acquired features
to 2 and visualize these 2D features. As shown in Figure 3, the
distributions of the real and simulated corruptions are similar.

3.2.2 Sensor CorruptioBensor corruptions re ect internal envi-

the position measured in di erent coordinate systems can be con-
verted to each other. However, even with well-calibrated sensors,
the position of the sensors can inevitably deviate due to mechanical
vibrations (e.g., when a self-driving car rides on a bumpy road) and
thermal uctuations [50. Suppose a 3D point in the LiDAR coordi-
nate isp.g and a corresponding point in the camera coordinate is
p20< - The transformation from the LiDAR coordinate to the camera
one can be expressed as:

cam
TeloP:8

®)

pP2o< =

ronment changes that lead to corrupted sensor signals, e.g., noisesWhere T(30 is a rigid body transformation matrix. In our experi-

during transmission, and sensor artifacts that lead to blurry im-
ages. In this benchmark, we consider sensor corruption from two
perspectives: (1) noise pattern, and (2) sensor artifacts.

Noise Pattern. Noise typically exists in both camera and Li-
DAR [11]. There are two main sources of noise, one is from the
sensor itself, such as sensor vibratiof], random re ections and
the low-ranging accuracy of LiDAR laserg§. The other is due

to the digital signal in its transmission recording proces&y. We
leverage two of the most common noise for each sensor,Gayss-

ian noise (GN) andimpulse noise (IN) . Speci cally, Gaussian
noise applies Gaussian distributed noise to each point's coordinate
in a point cloud or each pixel's value in an image. Impulse noise ap-
plies deterministic perturbations to a subset of points or randomly
changes the value of image pixels.

Sensor Artifacts . Sensor corruption could also result in artifacts
of sensing results. For instanagefocus blur (DB) occurs when

a camera is out of focuslf]; motion blur (MB) appears when a
camera is shaking or moving quicklyif. Distortion (DT) is one of

the common basic optical aberrations caused by the optical design

ments, we add a minor rotation (withii2 ) to each rotation angle
(i.e., roll, yaw, pitch) to simulate spatial misalignment between the
camera and LiDAR.

Temporal misalignment . MSF system requires synchronization

of sensors to ensure the output from each individual branch is
sensed at the same time. In practical scenarios, sensor or trans-
mission failure may cause a delay in one branch, resulting in a
temporal misalignment47]. To simulate temporal misalignment,

for a timestampG, we replace the data g!G° withthe " g!G  C.

This could represent a signal delay ofCsecond on brancR

3.3 Evaluation Metrics

Our benchmarks provide speci ¢ quantitative performance evalua-
tion metrics for each perception task, including object detection,
object tracking, and depth completion. Then, we de ne robustness
evaluation metrics based on these metrics. Below we describe each
perception task and the corresponding evaluation metrics.

Object detection aims to locate, classify and estimate oriented
bounding boxes in the 3D space. Note that in this benchmark, we

ESEC/FSE '23, December 3 9, 2023, San Francisco, CA, USA
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mainly evaluate the detection dar objects with moderate di -
culty. The accuracy of object detection can be measured by 10U
(intersection over union) and AP (average precision).

IOU measures the overlap area between a ground-truth 3D
bounding box g and a predicted 3D bounding box over their
union[32]. The computation of IOU can be represented as:

_area 2\ ¢
area [ ¢

(6)

In our experiments evaluation, we de ne a successful detection as
an |OU larger than 70%.

AP is used to measure the performance of the overall detection
performance, which approximates the shape of the Precision/Recall
curve as: ~

.10
AP} = —
P o
We apply forty equally spaced recall level87, i.e.," 20 =
f1e40 2:40 """e1g The interpolation function is de ned as:
dinterp 12 = maxen A 14% \whered1/# gives the precision af

Multiple object tracking aims to maintain objects' identities
and track their location across data frames over time. The accuracy
is measured by MOTA (multiple object tracking accuracy) [2]:

I c'FNg; FR, IDSW?
" cGTc

whereFN;, FR, andIDSWcare the number of misses, of false posi-

tives, and of mismatches, respectively, during a pei@the MOTA

can be regarded as a measurement of three di erent types of errors.

Depth completion aims to up-sample sparse irregular depth to
dense regular depth. The depth completion tasks focus on predicting
the distance for every pixel in the image from the viewer given

dinterp Kat ]

MOTA=1

®)
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Note that both'l , and<'l can generalize to di erent MSF
systems, tasks, and corruption patterns. In this way, we expect our
benchmark and evaluation metrics to be exible and extensible.

3.4 Dataset

KITTI [1€ is one of the most popular autonomous driving datasets,
which adopts four high-resolution cameras, a Velodyne HDL-64E
LiDAR, and an advanced positioning system to collect data from
di erent real-world driving scenarios. KITTI supports diverse per-
ception tasks, including 3D object detection, 3D object tracking,
depth completion, etc. During the paper collection process, we also
found that more than two-thirds of the MSF perception systems
are evaluated on KITTI. To this end, we use the KITTI as our base
dataset to construct KITTI-C to benchmark Al-enabled MSF sys-
tems' performance and robustness. Note that, corruption patterns
used in this study can also generalize to other datasets, such as
Waymo [39] and NuScenes [5].

4 EMPIRICAL STUDY DESIGN

In this section, we introduce our research questions and experimen-
tal setup. We rst investigate the robustness of existing Al-enabled
MSF systems from three perspectives: (1) against corrupted signals
(RQY), (2) against spatial/temporal misalignmeni@2), and (3)
against partial/complete signal losRQ3). Then, we investigate
the potential of repairing these MSF systems' robustnd®Q4).

4.1 Research Questions
RQ1. How do Al-enabled MSF-based perception systems per-

LiDAR point cloud and image data. We use the Root Mean Squared form against common corrupted signals? Though a few Al-
Error (RMSE, mm) to measure the distance between the predicted enabled MSF perception systems have been proposed and used,

depth and ground-truth value:
v

10 2
¢ =z

3% 3§
81
where38+ 3 are the predicted depth and ground-truth of tH&h
position,< is the total number of ground-truth.

To further evaluate the robustness of di erent fusion mecha-
nisms across di erent MSF systems and tasks, we de ne the robust-
ness of MSF on a corruption patteth?  with severityB2 ( as its
performancé’/E relative t0%:40= (performance on clean data):

"1 8 =989%.40- (10)

where%is measured by one of the evaluation metrics for the corre-
sponding MSF task, i.e., AP, MOTA, or RM’Sﬁle;40:represents
the clean data. A largef. 2 means that the system's performance
against a speci ¢ corruption pattern is closer to the normal per-

)

there is no systematic study on the robustness of these systems.
In this RQ, we focus on corrupted signals due to weather, sensor,
and noise corruptions (Table 2). For each corruption pattern, we
adopt three di erent levels of severity. Speci cally, for rain and fog,
three severity levels represent 10mm/h, 25mm/h, and 50mm/h of
rainfall and 104m, 80m, and 51m of visibility, respectively. To sum
up, we conduct experiments with 231 di erent con gurations (11
corruptions 3 levels 7 MSF systems) to investigate this RQ.

RQ2. How sensitive is Al-enabled MSF when facing spatial

and temporal misalignment of sensors? RQ2 aims to evaluate

the Al-enabled MSF system's sensitivity to calibration errors. To
simulate the spatial misalignment, we rotate the LiDAR sensor
around the x, y, and z axes b§5 , 1 , and2 , respectively. To
simulate temporal misalignment, we create ve levels of LiDAR
and camera signal delay, i.e., 0.1s, 0.2s, ..., 0.5s, respectively. We
only investigate temporal misalignment's e ects on object tracking

formance. Then, we estimate the robustness of an MSF system by systems as the other two tasks are not time-sensitive.

averaging over all of the corruption patterridwith severityB i.e.
16 16
<1 =~ = 15 (11)
(g 119,
Alower<'l means a higher risk of performance degradation when
the MSF system is deployed in the open operational environment.

INote that we normalize the metric of each task int6» 14

RQ3. To what extent are existing sensing components cou-

pled of an Al-enabled MSF system? This RQ aims to investigate

how existing Al-enabled MSF systems are coupled and if they are
robust enough against signal loss of one source of signals. To inves-
tigate this RQ, we simulate the signal loss with ve di erent levels

(10%, 25%, 50%, 75%, 100%) of each branch. For the camera branch,
we reshape the image into a one-dimensional array and randomly
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