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Figure 1: DeepSeer is an interactive tool for supporting RNN model understanding and debugging via state abstraction. 
DeepSeer helps programmers by providing Global Explanations and Local Explanations as a synergistic loop for an RNN model. 
Programmers can use DeepSeer to quickly understand and identify potential bugs by exploring Global Explanations, then 
zoom into Local Explanations to contextualize global explanations. Programmers can also debug on a specifc instance according 
to Local Explanations, then validate their debugging hypothesizes by zooming out to compare with Global Explanations. 

ABSTRACT 
Recurrent Neural Networks (RNNs) have been widely used in Natu-
ral Language Processing (NLP) tasks given its superior performance 
on processing sequential data. However, it is challenging to inter-
pret and debug RNNs due to the inherent complexity and the lack 
of transparency of RNNs. While many explainable AI (XAI) tech-
niques have been proposed for RNNs, most of them only support 
local explanations rather than global explanations. In this paper, 
we present DeepSeer, an interactive system that provides both 
global and local explanations of RNN behavior in multiple tightly-
coordinated views for model understanding and debugging. The 
core of DeepSeer is a state abstraction method that bundles se-
mantically similar hidden states in an RNN model and abstracts the 
model as a fnite state machine. Users can explore the global model 
behavior by inspecting text patterns associated with each state and 
the transitions between states. Users can also dive into individual 
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predictions by inspecting the state trace and intermediate predic-
tion results of a given input. A between-subjects user study with 28 
participants shows that, compared with a popular XAI technique, 
LIME, participants using DeepSeer made a deeper and more com-
prehensive assessment of RNN model behavior, identifed the root 
causes of incorrect predictions more accurately, and came up with 
more actionable plans to improve the model performance. 
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1 INTRODUCTION 
Deep neural networks (DNNs) have been increasingly adopted in 
practice due to their superior performance on real-world challeng-
ing tasks, e.g., self-driving [49], virtual assistant [9], and disease 
diagnosis [34]. The rapid development of deep learning systems 
brings opportunities, but also challenges and concerns. One of the 
major concerns arises from the interpretability of DNNs [36]. Unlike 
traditional software whose decision logic is manually programmed 
in the form of source code, a DNN model includes a large number 
of neurons connected by non-linear functions, whose weights are 
automatically learned from training data. The internal states of 
traditional software can be easily inspected and analyzed by setting 
breakpoints and checking runtime values. However, the internal 
states of a DNN model are high-dimensional vectors rather than 
symbolic values. It is hard to tell what kinds of patterns a DNN 
model has learned by inspecting these vectors or why the model 
makes a specifc prediction. Therefore, this internal complexity and 
inscrutability of DNNs lead to signifcant debugging challenges, as 
well as concerns about the trustworthiness and reliability of DNNs. 

Although there is a recently growing interest in improving the 
interpretability of DNNs in the ML, HCI, and Visualization commu-
nities, many existing techniques treat a DNN model as a black 
box and generate model-agnostic explanations such as feature 
importance, without revealing the inner workings of the DNN 
model [32, 39, 53, 54]. While there are some techniques for visual-
izing the hidden states in a DNN model, many of them focus on 
convolutional neural networks (CNNs) [8, 48, 57]. In this work, we 
are particularly interested in recurrent neural networks (RNNs). 
Compared with other kinds of DNNs, recurrent neural networks 
(RNNs) are capable of processing sequential data with variable 
lengths, such as text and audio. The recurrent architecture afords 
an internal memory in RNNs, which is proven efective for learning 
temporal patterns in sequential data. Yet this architecture also poses 
challenges in visualizing the internal states of RNNs. Unlike CNNs 
which have a fxed number of layers and neurons in each layer, 
RNNs are unbounded. Furthermore, instead of treating each layer 
separately, which is a common practice in CNN visualization, it is 
important to visualize the dynamics of RNN units, i.e., the temporal 
patterns embedded in a sequence of hidden states. 

In this paper, we present DeepSeer, an interactive system that 
allows model developers to understand and debug RNN models. 
Our key insight is to treat an RNN model as a stateful system. By 
clustering and abstracting semantic similar hidden states, an RNN 
model can be represented as a fnite-state machine (FSM), which is 
much smaller and more navigable compared with the original RNN 
model. Furthermore, instead of directly visualizing the values of 
hidden states as in prior work [59], DeepSeer projects hidden states 
to a more interpretable representation—the common words and 
phrases associated with these states. By inspecting the transitions 
among states, users can quickly identify the temporal patterns 
learned by the model. 

To assess the overall usefulness of DeepSeer, we conducted a 
between-subjects user study with 28 programmers of various lev-
els of expertise in ML and RNNs. Given a pre-trained RNN model, 
participants were asked to complete a model understanding task 
followed by a debugging task using either DeepSeer or a popular 

XAI tool, LIME [53]. We found that in the model understanding 
task, participants using DeepSeer provided more insightful answers 
about the model behavior, pinpointed model limitations more pre-
cisely, and gave more useful and diverse suggestions about how to 
improve the assigned model. Furthermore, in the model debugging 
task, participants using DeepSeer identifed the reasons for the 
misclassifcations more correctly than participants using LIME. 

In summary, this work makes the following contributions: 
• System. We design and develop an interactive system for under-
standing and debugging the internal behavior of RNNs. We frst 
leverage the state abstraction method to abstract an RNN model 
as a fnite state machine through bundling semantically simi-
lar hidden states. Then we design and implement three tightly-
coordinated views: state diagram view, pattern summary view, 
and instance view to visualize and interpret the internal behavior 
of an RNN model from diferent perspectives. We have open-
sourced our system on GitHub 1. 

• Visualizations and interactions. We propose a set of visualiza-
tion and interaction designs to facilitate the interpretation and 
debugging of RNNs at diferent granularities. Specifcally, we 
combined state diagrams, responsive tooltips, state traces, color 
highlighting, fltering, instance matching, and pattern summariza-
tion to simultaneously show the global model behavior, instance-
level explanations, critical patterns, and similar instances. 

• Evaluation. A between-subjects user study demonstrates the 
usefulness of DeepSeer to ML developers when understanding 
the overall behavior of a model and debugging misclassifcations. 

2 BACKGROUND: RECURRENT NEURAL 
NETWORKS 

Recurrent Neural Networks (RNNs) are a type of deep neural net-
work that is specifcally designed for processing sequential input, 
e.g., text data. In this section, we briefy introduce the basics of it. 

As shown in Fig. 2, an RNN model takes sequential inputs 
{�1, �2, . . . , �� }. The RNN model frst initializes its hidden state 
vector ℎ0 ∈ R� , where � is the dimension of this hidden state vec-
tor. At a time step � , the RNN model takes an input �� (1 ≤ � ≤ � ) to 
update its internal hidden state from the last time step ℎ� −1 to the 
new hidden state ℎ� . This process can also be seen as maintaining 
and updating the “hidden memory” of an RNN model. Therefore, 
to understand an RNN model, it is important to interpret such 
“memory” maintained in diferent hidden states [43, 59]. 

To make a prediction at time step � , an RNN model transforms 
the hidden state ℎ� into the desired output format �� . For instance, 
to perform a classifcation task, the hidden state ℎ� is usually fed 
into an MLP (multilayer perceptron) network to project ℎ� into 

∈ R� �� , where � is the number of classes. Then a probability 
distribution �� is computed through a “softmax” function: 

�� = softmax(�� ) 

��
� Í� 

=1 �
� 

(1)
�� = 

� 
for � = 1, . . . , � � � 

� 
� 

The prediction result at time step � is further computed by fnding 
a label � which produces the maximum probability �� 

� . 
1https://github.com/momentum-lab-workspace/DeepSeer 
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Figure 2: The workfow of a basic recurrent neural network 
(RNN). At each time step � , RNN takes an input �� to update 
its hidden state ℎ� . The prediction result at time step � (�� ) is 
obtained by processing the hidden state ℎ� . 

Note that the process of updating the hidden state ℎ� can be 
achieved by diferent types of RNN units, such as the Elman RNN 
cell [18], long short-term memory (LSTM) [23], and gated recurrent 
unit (GRU) [12]. In our user study sessions, we use GRU, which 
shows better efciency compared with other variants. Note that 
our proposed system only requires access to the hidden states and 
does not require access to the updating process inside an RNN unit. 
Therefore, it can be generalized to diferent types of RNN units. 

3 RELATED WORK 

3.1 Explainable AI 
Our work is most related to Explainable AI (XAI), since it promotes 
model interpretability by abstracting a DNN model as a fnite state 
machine (i.e., a global explanation) and by rendering the state trace 
of a given instance (i.e., a local explanation). Previous studies have 
shown that supporting model interpretability can increase user 
acceptance and trust of the system [17, 22, 30, 55], improve fair-
ness [14], and improve human-AI team performance [11]. A good 
interpretation should be in an interpretable domain [45], i.e., map-
ping any of abstract concepts (e.g., numeric vectors) into a domain 
(e.g., images, texts) that the human can understand. Our work is 
inspired by this principle—instead of visualizing hidden state values 
as in some prior work [59], we map hidden states back to linguistic 
patterns in the text corpus. In this way, users can easily recognize 
what patterns an RNN model has learned from the training data. 

Existing XAI methods can be roughly grouped into two cate-
gories: model-agnostic methods and model-aware methods. Model-
agnostic methods [39, 53, 54] treat the model to be explained as a 
black box. LIME [53] is a well-known technique in this category. 
Given an input instance, it learns a simpler and interpretable model 
(also known as a surrogate model), such as a linear regression 
model, to approximate a complex model using the training data 
near the given instance. By rendering the feature’s importance in 
the surrogate model, LIME generates a local explanation for the 
prediction of the given instance. However, these model-agnostic 
methods usually ignore the internal behavior of a model when gen-
erating explanations. Specifcally, given an RNN model, they do not 
take the transitions between diferent hidden states into account. 
On one side, this may lead to low-fdelity explanations [52]. On the 
other hand, advanced user groups such as model developers may 
fnd it insufcient to debug model behavior [59]. To address this 

challenge, DeepSeer is designed to investigate the internal behavior 
of an RNN model via a novel fnite state machine abstraction. 

Unlike model-agnostic methods, model-aware methods try to 
open up the black box of a DNN. Among diferent model-aware 
methods, our work is most related to attribution-based methods and 
infuence function methods. Attribution-based methods [56, 58, 64] 
often use activation or gradient information in a DNN model to 
compute the importance score for input features, e.g., pixels in 
an image, tokens in a sentence. For example, Karpathy et.al. [27] 
presents a visualization that maps neurons’ activation to individual 
characters in a sentence. This visualization is only applicable to 
individual sentences (i.e., local explanations), which becomes hard 
to interpret with a large number of sentences. Our work difers in 
a way that we aggregate words and phrases with similar hidden 
states from many sentences in a fnite state diagram while also 
providing a way to delve into the state trace of individual sentences. 
Infuence function methods [7, 31, 32] compute the infuence of an 
individual training instance based on gradients and identify a set of 
instances that have a big impact on model predictions. Our design 
of infuential patterns and possible buggy patterns draws inspirations 
from these methods. Specifcally, DeepSeer summarizes short text 
patterns which usually signifcantly afect model predictions or 
have led to possible bugs by analyzing the hidden states of training 
data. 

We further refer readers to existing surveys and literature re-
views [2, 6, 44] for more details about diferent XAI methods. 

3.2 DNN Debugging, Testing, and Repairing 
Several explainable AI techniques have been used to understand and 
debug model errors [3, 29, 32, 53]. For example, Ribeiro et.al. con-
ducted a user study with 27 participants and showed that the ex-
planations generated by LIME could be used to detect spurious 
correlations learned by a model. Koh et.al. [32] have shown that 
infuence functions can be used to debug domain mismatch. How-
ever, Adebayo et.al. [3] found that post-hoc model explanations, 
especially attribution-based methods, are sometimes inefective 
for detecting certain kinds of bugs such as label error and out-of-
distribution error. 

In parallel, the Software Engineering (SE) community has de-
veloped several techniques by adapting traditional SE techniques 
to debug, test, and repair DNN models [40, 41, 62, 63]. DeepRe-
pair [63] uses a style-transfer-based data augmentation method to 
repair DNN models. RNNRepair [62] identifes infuential instances 
for retraining and remediates two types of incorrect predictions at 
the sample and segment levels. MODE [41] presents a debugging 
workfow by frst conducting model state diferential analysis and 
then selecting training instances for retraining. LAMP [40] provides 
data provenance information by computing the importance of input 
through automated diferentiation. These techniques focus on au-
tomating the debugging and retraining pipeline and do not involve 
humans in the loop. Our work difers from these techniques in two 
ways. First, DeepSeer aims to provide a comprehensive understand-
ing of model behavior by abstracting RNNs as a state diagram and 
identifying infuential patterns, going beyond diagnosing model 
prediction errors. Second, to enable model developers to diagnose 
model errors, DeepSeer renders the intermediate prediction results 
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of input and provides afordances for investigating how individ-
ual words and phrases infuence the prediction result, rather than 
automatically localizing the root cause of a model error. 

3.3 RNN Visualization 
Many DNN visualization techniques have been proposed to help 
users understand and analyze the inner workings of DNN models. 
The most related visualization techniques to us are those specif-
cally designed for RNNs [27, 43, 59]. Karpathy et.al. [27] visualizes 
which characters in an input sentence the RNN attends to based on 
the activation function output. Li et.al. [33] use a gradient-based 
salience score, rather than neuron activation, to measure the im-
portance of each word in an input sentence. The salience scores are 
then visualized in a heatmap. Both visualizations are static and can 
only visualize the hidden states of a single input at a time. Strobelt 
et.al. [59] extend them by building an interactive visualization ap-
proach called LSTMVis. LSTMVis renders individual hidden states 
in a parallel coordinates plot. It allows users to interactively select 
specifc segments of an input sentence and search for other inputs 
with similar hidden states. However, given that RNNs typically 
have hundreds or even thousands of hidden states, visualizing in-
dividual hidden states can lead to signifcant cognitive overhead 
for users. To address this issue, DeepSeer clusters similar hidden 
states to an abstract state and represents an RNN model as a f-
nite state machine. This signifcantly reduces the number of states 
users need to keep track of and also allows DeepSeer to directly 
visualize the fnite state machine to provide a global view of the 
entire model rather than individual hidden states. Our work is also 
related to RNNVis [43]. RNNVis clusters similar hidden states as 
memory chips and renders text inputs associated with each cluster 
as word clouds. However, unlike a fnite state machine, this design 
does not capture the transition between hidden states or render 
longer linguistic patterns beyond common words. Furthermore, 
DeepSeer provides additional features to facilitate model inspec-
tion and debugging, e.g., rendering intermediate prediction results, 
summarizing infuential patterns and buggy patterns, etc. 

4 DESIGN GOALS AND SYSTEM OVERVIEW 
In this section, we frst summarize the design goals of our system 
based on a literature review. Then, we present a system overview 
to discuss how our system design supports each design goal. 

4.1 User Needs and Design Goals 
To understand the needs of RNN developers, we perform a literature 
review of previous papers that have done a formative study of 
interpreting DL models, have done a user study of existing tools, or 
have discussed the challenges and opportunities of explaining and 
debugging DL models. Based on the literature review, we summarize 
the following design goals for DeepSeer: 
G1. Help users understand the overall behavior of an RNN 
model. Previous studies have shown that model developers prefer 
to have a high-level understanding of what has been learned by 
the model [13, 35, 43]. For instance, Kaur et al. surveyed 197 ML 
developers about the interpretability tool’s capabilities, and 61% of 
responses mentioned the importance of global explanations [28]. 
Specifcally, Ming et al. highlighted the importance of rendering 

the semantic information captured by the hidden states of an RNN 
model [43]. Thus, DeepSeer should help model developers under-
stand the overall behavior of an RNN model, especially the semantic 
information learned by its hidden states. 
G2. Help users understand the model decision-making pro-
cess on a specifc input of interest. When inspecting individual 
prediction results, especially incorrect ones, model developers wish 
to understand why the model makes such a prediction on the partic-
ular input [5, 24, 35]. For instance, through a formative study with 
nine ML developers, Hohman et al. [24] found that users wanted 
to see how diferent features contributed to the model’s decision. 
Furthermore, Kahng et al. interviewed ffteen Facebook developers 
and found that a natural way for them to understand complex mod-
els was to inspect the model behavior on individual examples [26]. 
The importance of local explanation is also confrmed by the large-
scale survey [28]—65% of respondents considered local explanations 
important. 
G3. Help and assist users in searching for similar data. 
Through a user-centered design process with two NLP developers, 
Liu et al. found that NLP developers typically follow an “exploration-
centric” approach to discover and debug errors in an NLP model [38]. 
That is, developers prefer to inspect and compare predictions among 
similar input examples to get insights. Therefore, traceability should 
also be provided to help users easily explore similar examples when 
debugging a model prediction [24]. Specifcally, Strobelt et al. high-
lighted that matching similar examples for RNN could help devel-
opers validate an interpretation hypothesis [59]. 
G4. Help users summarize the common characteristics of 
input data. Inspecting individual data points can be tedious and 
time-consuming, hindering insight discovery. Kahng et al. found 
that model developers at Facebook often curated subsets of data 
with common characteristics to understand how a model behaves 
at high-level categorization [26]. Furthermore, helping users iden-
tify common input characteristics is particularly useful for error 
analysis. Jin et al. found that ML developers usually needed to 
examine the characteristics shared by a set of wrong predictions 
and verify whether error patterns formed by these characteristics 
make sense [25]. However, this is often manually done by users 
based on their domain knowledge. Therefore, DeepSeer should 
support users in identifying and examining common characteristics 
of inputs, especially mispredicted inputs. 

4.2 System Overview 
To support users gaining a high-level understanding of what has 
been learned by an RNN model (G1), we choose to render an RNN 
model as a state diagram in which each node is a group of similar 
hidden states from the RNN model, as shown Figure 3 ○A . Compared 
with the original RNN model, which has hundreds or thousands of 
hidden states, the state diagram is much smaller after state cluster-
ing and thus more navigable. Furthermore, DeepSeer binds each 
node with the text patterns memorized by the corresponding hidden 
states to help users interpret the semantic meaning of the hidden 
states. Compared with an alternative design of directly visualizing 
the hidden states values [27, 59], which are high-dimensional arrays 
and hard to interpret, the state diagram is easier to navigate and 
inspect. 
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Figure 3: DeepSeer, an interactive system for visualizing, understanding, and debugging RNN models. (A) The State Diagram 
View displays the abstracted states and transitions of an RNN model. (B) The Patern Summary View displays common text 
patterns learned by an RNN model. (C) The Instance View displays the raw data as an interactive data grid for users to explore 
data used to train or test an RNN model. (D) Intermediate Prediction Results are rendered when users input a new sentence. 

To help users understand the model decision-making process on 
specifc inputs (G2), DeepSeer visualizes the intermediate model 
prediction result after an RNN model reads each word in an input 
sentence (Figure 3 ○D ). In this way, users can easily see which word 
sways the decision of the model and contributes more to the fnal 
result. To support G3, DeepSeer allows users to search input sen-
tences with similar text patterns (i.e., have the same keyword or 
follow the same regular expression) or with similar model behavior 
pattern (i.e., have the same state or follow the same state trace) in 
an instance view (Figure 3 ○C ). To help users fnd common patterns 
(G4), DeepSeer proactively identifes frequent text patterns that 
have a high infuence on model prediction results, as well as pat-
terns that are shared among incorrect predictions (Fig. 3 ○B ). Such 
common patterns can also serve as a complementary global expla-
nation method (G1), since it provides more straightforward starting 
points for investigation if users fnd a state diagram overwhelming. 

5 DESIGN AND IMPLEMENTATION 

5.1 State Abstraction 
To generate a state diagram from an RNN model, we develop a 
method that clusters semantically related hidden states of the RNN 
model into an abstract state. Our work is inspired by the model-
based analysis of stateful RNNs [15, 16, 47, 51, 61]. These works 
apply various techniques to extract interpretable state transition 
models (e.g., discrete-time Markov chain, automata) from stateful 
RNNs. By turning complex RNNs into interpretable state transition 
models, black boxes are turned into more transparent models and 
thus improve the model interpretability, which also provides the 
possibility for further analysis. We choose to build on top of a state-
of-the-art method, DeepStellar [16], since it is demonstrated to be 
efective in various tasks, including adversarial detection [16], DNN 
testing [16], and DNN repair [62]. Previous work has also shown 
that abstracted states can make the same prediction as the original 
RNN model in 97% of test data [62]. 
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A State Tooltip
Hovering on State 39 displays data distribution over it.

B Information Card
Click on State 39 to see its associated word(s).

Figure 4: Interacting with the State Diagram View to understand the abstracted states of an RNN model. 

To obtain the FSM representation for a trained RNN, we abstract 
over both the states and the transitions. Appendix A presents the 
algorithm for state abstraction. Here we briefy summarize how 
it works. For each instance in the training data, our method frst 
records the intermediate hidden vectors {ℎ1, ℎ2, . . . , ℎ� } during in-
ference, where ℎ� (1 ≤ � ≤ �) is a concrete hidden state of an RNN 
model. � denotes the number of tokens in a sentence. Our method 
then applies Principle Component Analysis (PCA) for dimension 
reduction on all concrete states collected from training data be-
fore abstraction. Diferent from DeepStellar [16], which uses an 
interval-based method for states abstraction, our method applies 
Gaussian Mixture Model (GMM) [42] to cluster similar concrete 
states. GMM addresses two key limitations in the interval-based 
method: 1) newly generated hidden vectors can fall outside the 
interval at test time, resulting in unknown states; 2) the number of 
states grows exponentially with � dimension and � intervals (�� ), 
and too many states can be hard to visualize. With state abstraction, 
the model prediction process on a given input can be modeled as a 
sequence of abstract states. We call this state sequence the trace of 
model prediction. 

We conducted a quantitative analysis of the faithfulness of state 
abstraction. We measured the prediction consistency between the 
abstracted and original models in the three diferent NLP tasks from 
the usage scenario (Section 6) and the user study (Section 7.2). The 
prediction consistency on the test data is 99%, 97%, and 85%, respec-
tively. This implies that abstracted models can faithfully represent 
the behavior of RNNs. Appendix B includes the experiment details. 

Diferent from the previous work focusing on state abstraction 
technique itself or using the technique for model testing and repair-
ing, our work is the frst to extend this technique for interactive 
model explanation and debugging with a more accessible user in-
terface. Our work integrates state abstraction into a “human-in-the-
loop” approach for the frst time to support users in understanding 
and debugging an RNN model with rich interaction mechanisms. In 

the following subsections, we will introduce the interactive features 
of DeepSeer built on top of state abstraction. 

5.2 State Diagram View 
The State Diagram View visualizes the fnite state machine that is 
abstracted from the given RNN in the previous step. It provides an 
overview of the model behavior and helps users understand the 
semantic meanings of its hidden states. Users can navigate through 
diferent state nodes to explore what prediction result a state often 
leads to and how many times this state has been visited. Specif-
cally, each state is color-coded based on how frequently the input 
instances going through this state have a specifc prediction result. 
The size of a state node is determined by how many input sentences 
have visited this node during the training time. For example, in 
Fig. 4 ○A , since the RNN model makes two possible predictions— 
positive comment or negative comment, all nodes are assigned to 
two distinct colors—blue for positive comments and red for nega-
tive comments. Since there are fewer red nodes and the red nodes 
have a much smaller size than blue nodes, one can interpret that 
the training dataset has more positive comments than negative 
comments and the RNN model is more likely to make a positive 
prediction. The width of an edge between two states indicates how 
frequently this transition has occurred during the training time. 
The RNN model moves from one state to another state when it 
reads more words from a given input sentence. 

When a user hovers the mouse over a state, a tooltip is rendered 
to provide more details about this state, e.g., the number of training 
instances that go over this state and is eventually predicted to a 
specifc result (Fig. 4 ○A ). When users click on a state, an informa-
tion card (Fig. 4 ○B ) popped up showing the phrases and words 
that are frequently associated with this state in the training data. 
This feature allows users to interpret the semantic information 
memorized by hidden states. Clicking on a state also updates the 
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Figure 5: Interacting with the Patern Summary View in DeepSeer to inspect the text patterns learned by an RNN model. 

instance view to flter out the input instances that do not visit this 
state during model prediction. 

5.3 Pattern Summary View 
The Pattern Summary View renders common patterns based on 
frequent state transitions during the training time. Basically, a 
frequent subsequence of states is viewed as a pattern, which can be 
further converted into a sequence of words based on the words or 
phrases associated with each state. DeepSeer identifes two kinds 
of patterns: Infuential Patterns and Possible Buggy Patterns. 

Infuential Patterns are patterns that change the model’s inter-
mediate predictions, e.g., changing from a positive comment to a 
negative comment after reading certain words in the middle of a 
given input sentence. To identify infuential patterns learned from 
the training data, DeepSeer frst identifes the pivoting points (i.e., 
the point where the intermediate prediction changes) in the state 
trace of each training instance. Then DeepSeer splits each state 
trace into subsequences based on the pivoting points. These sub-
sequences are sorted based on their frequency and rendered in a 
descending order in the pattern summary view. 

Possible Buggy Patterns are mined only from incorrectly pre-
dicted instances from the training data. These patterns indicate the 
cases where the RNN model does not learn well and thus makes a 
misprediction. To identify buggy patterns, DeepSeer frst divides 
the training data � into two subsets according to the correctness of 
their prediction results. Let’s denote the subset only include correct 
predictions as �� and the subset only include false predictions as 
�� , respectively. Then we use TKS [19] (Top-K Sequential pattern 
mining) to mine frequent subsequence patterns from each subset. A 

subsequence pattern is considered possibly buggy if it only occurs 
in the misclassifed inputs (�� ), not in the correctly classifed inputs 
(�� ). These buggy patterns are sorted based on their frequency and 
rendered in a descending order in the pattern summary view. 

Users can click on a specifc pattern to see the top frequent 
phrases associated with this pattern (Fig. 5 ○A ). This pattern sum-
mary view allows users to know what patterns the model has 
learned, and how these patterns would afect the model’s predic-
tions. Furthermore, Possible Buggy Patterns allows users to recog-
nize potential prediction risks of an RNN model. Clicking on a 
pattern will update the instance view to flter out data instances 
that do not follow the selected pattern. 

5.4 Instance View 
The Instance View (Fig. 6) is a scrollable data grid of the raw data 
used to train or test the model. The rows of the data grid are in-
dividual data instances, and the columns are: Index, State Trace, 
Text, Prediction, Human Label, and Correctness of the data instance. 
Users can sort and flter the data instances by each column (Fig. 6 
○A ). Users can use the TRAIN/TEST tab to switch between training 
and test instances. The distributions of human labels and model 
prediction results are summarized and rendered on top of this view 
(Fig. 6 ○B ). As users flter the data instances, these distributions 
are also updated accordingly. Users can also search for specifc 
input data based on keywords or regular expressions (Fig. 6 ○C ). 
The matched results will be highlighted for better visualization. For 
each instance, its words and states are colored based on the inter-
mediate prediction results. Clicking on a row in the instance view 
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Figure 6: Interacting with the Instance View in DeepSeer to explore the data used to train/test an RNN model. 

will update the state diagram view to render the state transitions 
of the selected data instance. 

5.5 Intermediate Prediction Results 
The previous sections describe how users can use diferent views to 
achieve an overall understanding of the model behavior. Previous 
studies have shown that it is also important to allow users to inspect 
and debug model predictions on individual instances [39, 53, 56]. To 
support instance-level inspection and debugging, DeepSeer allows 
users to enter an input sentence in the text box in Fig. 7. After 
clicking on the magnifer button, DeepSeer renders the state trace 
of the model prediction on the given input. Furthermore, each word 
in the input sentence is colored based on the intermediate prediction 
result. For example, in Fig. 7 ○B , “red” and “blue” indicate negative 
comments and positive comments respectively. RNN typically uses 
the fnal hidden state after reading the entire sentence to compute 
the class probabilities. In DeepSeer, the hidden state after reading 
each word in a sentence is fed into the output layer to generate 
intermediate predictions. Through these intermediate predictions, 
users can inspect how the prediction result has changed over time 
as the RNN model reads more words in the input sentence. The 
pattern summary view is also updated with only infuential patterns 
and possible buggy patterns related to the given input sentence. 
With these supports, users can quickly fnd suspicious words or 
phrases when debugging an incorrect model prediction. 

6 USAGE SCENARIO 
Suppose Alice is a model developer, and she trains a toxicity de-
tection RNN model using the Toxic dataset 2. This model predicts 
whether a sentence has a positive tone or negative tone. Her model 
achieves 95% accuracy on the training data but only 89% on the 

2https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classifcation 

test data. Alice uses DeepSeer to fgure out why there is such a 
performance drift. 

6.1 Visualizing and Understanding an RNN 
Model 

Alice frst attends to the state diagram view, which gives her an 
overview of the trained RNN model as a fnite state machine (Fig-
ure 3 ○A ). In this state diagram, each node represents a group of 
similar hidden states in the RNN model. A blue node indicates that 
the model is more likely to give a Positive intermediate prediction 
after visiting this state, while a red node indicates that the model is 
more likely to give a Negative intermediate prediction. Alice hovers 
her mouse over a red node named State 39. As shown in Figure 4, 
a tooltip then pops up showing that the model makes a negative 
intermediate prediction 39, 948 times while only 5, 046 times for 
positive ones, after visiting this state. When Alice clicks on the 
node of State 39, an information card is displayed on the right (Fig-
ure 4 ○A ), showing common words and phrases associated with 
the state, such as “stupid”, “idiot”, and “stupid and”. Alice glances 
over several sentences with these words in the instance view below 
(Figure 3 ○C ) to check whether they are hate comments. In this way, 
Alice confrms that her RNN model indeed learns some meaningful 
patterns from the training data. 

While inspecting text patterns associated with each state is help-
ful, Alice fnds it cumbersome to check all states in the state diagram. 
So she switches to the pattern summary view (Fig. 3 ○B ) to under-
stand the model from another perspective. This view shows text 
patterns that have a signifcant impact on the model prediction (i.e., 
infuential patterns). Alice fnds some interesting patterns such as 
“more fake news” and “stupid enough to”. When Alice clicks on one 
of the patterns, “hypocrisy” (Fig. 5 ○A ), it is expanded to show a 
list of other frequent patterns that are associated with the same 

https://2https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
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Figure 7: Intermediate prediction results help users interpret model’s prediction when debugging. 

state sequence, ○13 → ○9 → ○9 , sorted by frequency.3 For example, 
this state sequence also memorizes “suck it up” (12 sentences), “ig-
norant of” (6 sentences), and “suck and blow” (4 sentences) in the 
training data. As Alice clicks on each pattern, the instance view is 
also updated to flter training and test data that does not follow the 
clicked pattern. Alice is also curious about which text patterns may 
cause incorrect model predictions. So she switches to the list of pos-
sible buggy patterns. These buggy patterns are summarized from 
misclassifed sentences only, rather than the entire training dataset. 
Alice sees some patterns such as “...”, “!!!”, and “???” (Fig. 5 ○B ). It 
seems that her model learns some spurious correlations between 
punctuation and prediction results, which may have contributed to 
many errors. To prevent the model from learning these spurious 
correlations, Alice plans to remove this punctuation to clean the 
training data, which may lead to better model performance. 

6.2 Debugging an RNN Model 
Now Alice wants to dig into the data and investigates why some 
sentences are misclassifed after having a high-level understanding 
of the model behavior. So she turns to the instance view (Figure 3 
○C ), which shows all training and test data in a paginated table. 

Alice frst notices that the training data is not balanced. There 
are signifcantly more positive sentences (92062) than negative ones 
(7938). Alice then switches to the test data and fnds misclassifed 

3This single word, “hypocrisy”, is associated with a sequence of three states, since it 
is tokenized into three tokens (hypo-, -cri-, -sy) in the training set, each of which is 
bound to one state. Such a tokenization mechanism is widely used in NLP to address 
out-of-vocabulary issues. 

sentences using the fltering feature on the Correctness column 
(Figure 6 ○A ). She copied a misclassifed sentence to the text box 
and run the instance-level model explanation feature on it (Figure 7). 
Each word in the sentence is colored based on the intermediate 
prediction result. A state trace is also rendered below. 

Alice quickly notices a few words that her RNN model considers 
negative during the prediction, such as “ugly head.” Even though 
such insulting words have been recognized by the model, this sen-
tence is eventually predicted positive. It seems the model quickly 
forgets these insulting words after seeing the subsequent words in 
the sentence. For example, after seeing “quarters”, the intermediate 
prediction changes from negative to positive. 

Figure 8: Alice search for “quarters” in the training data. 

To verify this hypothesis, Alice searches sentences that contain 
“quarters” in the training set using the keyword search feature in 
the instance view. Alice fnds 27 positive sentences and only 1 neg-
ative one that contains “quarters” in the training set (Fig. 8). Since 
many sentences with “quarters” are positive, the model may have 
learnt a spurious correlation between “quarters” and the positive 
sentiment. Alice further confrms her hypothesis by looking at the 
corresponding state, State 22, associated with the word “quarters”. 
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Alice fnds that State 22 is a positive state. Therefore, Alice con-
cludes that one reason for this misclassifcation is data imbalance, 
where most sentences with “quarters” are labelled as positive. To 
address this, Alice believes that one possible solution is to collect 
more data with this keyword to balance her training set and then 
re-train her model. Furthermore, given that the model quickly for-
gets an insulting word, Alice also plans to experiment with the long 
short-memory (LSTM) architecture with the attention mechanism, 
which can handle information in the memory for a longer time 
compared with a vanilla RNN. 

7 USER STUDY 
We conducted a between-subjects study with 28 participants to 
evaluate the efectiveness and usability of DeepSeer. We used 
LIME [53], a well-known tool for interpreting and debugging ma-
chine learning models, as a comparison baseline. Though LIME is 
not specialized for RNNs, it is a widely-used tool to understand 
and debug models. It has 10.3K stars and 1.7K forks on GitHub 4, 
and its Python package has been downloaded 16M times on PyPI 5. 
Therefore we choose it as a more realistic baseline. Given a model 
prediction, LIME can generate an explanation with importance 
scores for elements in the input data (e.g., words in an input sen-
tence). To enable a fair comparison, we built an interface for LIME 
similar to DeepSeer. The interface includes the existing visual-
izations provided by LIME and also includes the Instance View 
as in DeepSeer. It does not include the state diagram view and 
the pattern summary view, which are the novel contributions of 
DeepSeer. We investigated the following research questions to 
assess the overall usefulness of DeepSeer compared with LIME: 
• RQ1: To what extent does DeepSeer enhance users’ understand-
ing of an RNN model compared with a commonly used model 
explanation and debugging tool? 

• RQ2: To what extent does DeepSeer improve the accuracy of 
identifying the root cause of a misprediction of an RNN model 
compared with a commonly used model explanation and debug-
ging tool? 

7.1 Participants 
We recruited 28 participants (5 female and 23 male) through several 
graduate student mailing lists of the CS department and the ECE 
department at the University of Alberta.6 All participants had at 
least basic machine learning background. 15 participants were Ph.D. 
students, and the rest were Master’s students. 23 participants had 
2-5 years of machine learning experience, 3 participants had more 
than 5 years, and 2 participants had about 1 year. Regarding their 
RNN experience, 9 participants had more than 2 years of experience, 
7 participants had 1 year, and 12 participants had less than 1 year. 
Participants also self-reported their familiarity with developing 
RNN models in a 7-point Likert scale question. The median is 5, 
with 1 referring to “I have only heard about RNNs but never used 
it” and 7 referring to “I’m able to build an RNN model by myself.” 
25 participants said they had not used any debugging tools for 
DL, while 3 participants said they have used Tensorboard [1]. The 

4https://github.com/marcotcr/lime 
5https://pepy.tech/project/lime 
6This human-participated study is approved by the university’s research ethics ofce. 

studies were conducted on Zoom. Both DeepSeer and LIME were 
deployed as web applications that participants could access from 
their personal computers. 

7.2 RNN Models 
Since DeepSeer is designed for visualizing and debugging RNN 
models, we trained two RNN models for two popular ML tasks. For 
each RNN model, the dimension of a hidden state vector is 256. The 
frst ML task is to predict whether a question asked on Quora is 
sincere or insincere. It is originally from a featured competition 
from Kaggle, a popular online machine learning and data science 
community [50]. In this task, our RNN model is trained on 100,000 
Quora questions, each of which is labeled as sincere or insincere. 
The training accuracy of this RNN model is 93.93%, and the test 
accuracy is 89.07%. The second ML task is to predict the topic of a 
news article from a news corpus called AG’s News [20]. This task 
is a well-known benchmark for topic classifcation research [65]. In 
this task, our RNN model is trained on 109,886 news articles labeled 
into four news topics, including “Sports”, “Business”, “World”, and 
“Science and Technology.” The training accuracy of this RNN model 
is 91.57%, and the test accuracy is 87.68%. DeepSeer abstracts each 
RNN model into 40 states. This number is decided empirically to 
achieve a good balance between accuracy and the cognitive efort 
of inspecting a state diagram. We further provide a faithfulness 
analysis of the abstracted model in Appendix C. During a user study 
session, we randomly assigned one of the two RNN models to a 
participant to fnish the model understanding and debugging tasks. 
Interface of DeepSeer for each task can be found in Appendix D. 

7.3 Protocol 
We design a between-subjects user study where users experience 
one condition and one RNN model in each study session. We choose 
a between-subjects design rather than a within-subjects design 
since experiencing one condition takes around 60 minutes. Experi-
encing two conditions in a within-subjects design would require 
120 minutes, which is too long and can lead to signifcant fatigue 
and frustration. At the beginning of each session, we asked the 
participants for their permission for recording. Given that this was 
a between-subjects study, each participant was assigned to only 
one RNN model in one condition. In each session, participants were 
only allowed to use the given tool: DeepSeer in the experiment 
condition or LIME [53] in the control condition. The assigned RNN 
models and conditions were counterbalanced across participants. 
At the beginning of each study session, participants were asked 
to frst watch a 5-min tutorial video of the assigned tool, and then 
spend 5 minutes familiarizing themselves with the tool. Then, par-
ticipants were given 30 minutes to use the assigned tool to explore 
an assigned RNN model and share their understanding of the model 
behavior through a questionnaire. The questionnaire included three 
main questions: (1) What insights have you got about the model’s 
performance and behavior? (2) Did you fnd any bugs or limitations 
of the RNN model? If yes, what kind of bugs have you found? (3) 
How will you further improve the model? After flling out the model 
understanding questionnaire, participants were given 10 minutes 
to debug 5 incorrect model predictions using the assigned tool. For 
each incorrect prediction, they were asked to write down why the 

https://4https://github.com/marcotcr/lime
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Figure 9: Participants’ performance on model understanding. (A) The number of participants who mention diferent aspects of 
model behavior. (B) The number of participants who describe model behavior in diferent ways. (C) The number of participants 
who make diferent suggestions on model improvement. 

input data was misclassifed and submit their answers through a 
questionnaire. At the end of the study session, participants were 
asked to fll out a survey to share their experiences. In particular, 
the post-study survey included the NASA Task Load Index (TLX) 
questions [21] to measure the cognitive load of the study. Each 
participant received a $25 Amazon gift card as compensation for 
their time. 

8 USER STUDY RESULTS 
This section describes the results of the between-subjects user study. 
We frst present and analyze participants’ performance diferences 
on model understanding and debugging tasks when using DeepSeer 
and LIME. Then we present participants’ perception on DeepSeer’s 
tool features as well as cognitive load. For brevity, we use P1-P14 
to denote the participants using DeepSeer, and P15-P28 to denote 
the participants using LIME [53]. 

8.1 RQ1: User Performance on Model 
Understanding 

To evaluate user performance on model understanding, two authors 
manually assessed and coded participants’ responses and counted 
the number of correct insights about model behavior shared by par-
ticipants. Specifcally, these two authors had 4 meetings to develop 
a codebook and resolve labeling inconsistencies. Eventually, 651 
codes were generated and categorized into 32 themes. The fnal 
Cohen’s Kappa score is 0.9061. Note that one insight is considered 
correct only if both two authors agree. 

Overall, participants using DeepSeer provided more insights (53 
vs. 21) than participants using LIME. The mean diference of insights 
provided per participant (2.3) is statistically signifcant (Welch’s 
t-test: � = 0.0003). Fig. 9 provides a breakdown of diferent kinds 
of insights shared by participants. Participants using DeepSeer 

shared much more insights about global model behavior, model 
performance, and buggy behavior. For instance, P12 said, “It looks 
like the model is placing a lot of weight in the latter half of an input 
sentence.” P9 wrote, “this model is often confused by the Business and 
Science categories.” Furthermore, participants using DeepSeer often 
referred to text patterns and states when describing model behavior, 
while participants using LIME mostly referred to specifc keywords. 
P25 said, “it is not easy to summarize patterns [with LIME] when 
the size of dataset is large and there are many classes.” Since LIME 
is designed for local explanations, it is not surprising that only 2 
participants using LIME were able to derive global explanations for 
an assigned RNN model. 

Participants using DeepSeer also provided more useful and di-
verse suggestions about model improvement compared with LIME 
users (Fig. 9 (C)). Note that a suggestion is considered useful if 
it is related to the root causes of observed model misprediction 
and is accepted as an efective model improvement mechanism in 
the ML community. In particular, 5 participants using DeepSeer 
noticed the error pattern of forgetting previous tokens after read-
ing more tokens and suggested adding an attention layer, while 
only 2 participants using LIME noticed this. P10 wrote, “For many 
false predictions, the model is likely to give the right prediction at the 
beginning, but then turns to the wrong direction. Probably we could 
reduce the length of temporal dependencies with something like the 
attention mechanism.” Finally, participants using DeepSeer spent 
27 min 53 s (� = 2 min 44 s) on average, while participants using 
LIME spent 28 min 19 s (� = 3 min 15 s). We do not observe a 
signifcant diference in task completion time. 
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Table 1: The average of responses shared by participants in the model debugging task. 

Quora AGNews Overall 
DeepSeer LIME DeepSeer LIME DeepSeer LIME 

Reasonable explanations provided per participant 
Fault-inducing keywords mentioned per participant 
Non-fault-inducing keywords mentioned per participant 

4.3 
5.3 
0.8 

2.7 
2.7 
3.7 

4.3 
4.6 
1.0 

1.1 
1.4 
3.3 

4.3 
4.9 
0.9 

1.9 
2.1 
3.5 

8.2 RQ2: User Performance on Model Debugging 
To evaluate user performance on the model debugging task, we 
counted the number of reasonable explanations provided by partic-
ipants over fve misclassifed sentences. To assess the correctness 
of participants’ answers, two authors frst manually inspected the 
hidden states of the RNN and also the training data to diagnose the 
fve misclassifcations. Their investigation results were used as the 
ground-truth misclassifcation explanations. Then, they checked 
whether the participants’ explanations were consistent with the 
ground truth. 

As shown in Table 1, participants using DeepSeer provided more 
reasonable explanations for misclassifcation. Participants using 
DeepSeer provided 4.3 reasonable explanations for 5 misclassifed 
sentences on average, while participants using LIME only provided 
1.9 reasonable explanations. The mean diference of 2.4 is statisti-
cally signifcant (Welch’s t-test, � < 0.0001). 

Furthermore, we counted the number of correct fault-inducing 
keywords mentioned by participants. Participants using DeepSeer 
identifed more correct fault-inducing keywords than those using 
LIME (mean: 4.9 vs. 2.1). The mean diference of 2.8 is statistically 
signifcant (Welch’s t-test, � < 0.0001). In addition, participants 
using LIME misrecognized more keywords (mean: 3.5 vs. 0.9) as 
fault-inducing keywords (Welch’s t-test, � < 0.0001). This is be-
cause LIME frst learns a surrogate sparse linear model to simulate 
the RNN model and then computes word importance based on the 
linear model. This sometimes leads to unreliable explanations. Some 
participants also noticed this during the study. P22 commented, “in 
some cases, I found that the tool [LIME] did not generate a reliable 
explanation.” 

One interesting observation is that participants using DeepSeer 
were capable of identifying more complex error patterns beyond 
word patterns. For example, P9 answered, “At the very beginning, 
‘football’ indicates the model to predict sports, which is exactly what 
the model does. But when ‘UK’ appears, the state transits to ‘world’ 
[related state] and got stuck there.” None of the LIME users provided 
such insights, since LIME treats individual words separately and 
cannot capture the dynamics of the model’s decision process. 

Finally, participants using DeepSeer completed this task in an 
average of 9 min 9 s (� = 1 min 21 s), while participants using 
LIME took an average of 9 min 25 s (� = 0 min 11 s). There is no 
signifcant diference in task completion time. 

8.3 User Perception and Cognitive Load 
Our post-study survey solicited participants’ feedback on all key 
features of DeepSeer. Overall, participants considered DeepSeer’s 
visual encoding and interface intuitive, helpful, and clear. Among 
14 participants, 13 of them self-reported that they would like to 
use DeepSeer when developing and debugging RNN models in 

the future, while 1 participant stayed neutral. The median is 6.5 
on a 7-point Likert scale (1—I don’t want to use it at all, 7—I will 
defnitely use it if available). We report participants’ qualitative 
feedback on the key features of DeepSeer from both post-study 
survey and user study recordings below. 
Intermediate Prediction Results. All 14 participants using 
DeepSeer found the on-demand intermediate prediction results 
provided by DeepSeer useful. The median rating is 7 out of 7. P9 
mentioned, “stepping through intermediate predictions help me un-
derstand why model makes a wrong prediction. For example, the text is 
apparently about sports. However, the model goes into state 20 which 
is not quite related to sports.” Moreover, participants also liked the 
color-coding of intermediate prediction results. 
State Diagram. Among 14 participants, 11 of them considered 
the state diagram in DeepSeer useful. The median rating is 6. P12 
commented, “extracting an RNN model as a state diagram is nice, 
and I think it will also be helpful when interpreting [RNN models] 
with more complex data such as medical data.” While the majority of 
participants did not fnd the state diagram overwhelming, 3 found it 
slightly overwhelming and 1 found it very overwhelming. 7 out of 
14 participants found it useful to interact with the state diagram, e.g., 
seeing statistical distribution over states and keywords associated 
with each state. 
Patern Summaries. 9 out of 14 participants found that seeing the 
patterns in the pattern summary view and fltering the dataset based 
on a specifc pattern are useful (median rating: 6). P2 mentioned, “it 
is good for us to see inside of the model and fnd the bug with possibly 
buggy patterns.” In particular, participants also mentioned that the 
pattern summary view is helpful for debugging. P8 said, “I can click 
the buggy patterns to check related sentences. This helps me identify 
why model usually mis-classify [sentences] with these patterns.” 
Searching and Filtering Instances. Most participants agreed that 
it is useful to interact with each data instance in the instance view 
(median rating: 7) and search for similar instances (median rating: 
7). P4 mentioned, “I like the colors associated with each label, I feel 
this helped a lot with looking at examples. I also liked how it clearly 
showed examples with their true class and prediction. Also, the ability 
to also flter examples by correctness, prediction, and the true label 
was very helpful for me.” 
Limitations and Suggestions. 5 out of 14 participants pointed 
out that it would be better if DeepSeer could provide additional 
statistical information about model accuracy, e.g., confusion matrix. 
1 participant suggested that adding the confdence score for the 
explanation could help them make more informed decisions. 1 
participant found the state diagram mentally demanding. P6 said, 
“state diagram seemed a bit hard to interpret by just looking at it and 
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Figure 11: Participants’ ratings about cognitive load (1 means 
“strongly disagree” and 7 means“strongly agree”, * means the 
mean diference is statistically signifcant.) 

probably wouldn’t be immediately intuitive to a user opening this 
application up initially.” 
Cognitive Overhead. In the post-study survey, participants rated 
the cognitive load of the study via the NASA TLX questionnaire [21]. 
Fig. 11 shows their ratings for the fve NASA TLX questions. We 
found that there was no signifcant diference when using DeepSeer 
vs. LIME in terms of hurry, performance, efort, and frustration 
(Welch’s t-test: � = 0.7731, � = 0.7244, � = 0.6916, and � = 0.5620). 
Since DeepSeer renders much more information about model be-
havior (e.g., a state diagram, a pattern view, on-demand interme-
diate prediction results), participants using DeepSeer felt more 
mental demand (median value: 5 vs. 4, Welch’s t-test: � = 0.0011). 

9 DISCUSSION 

9.1 Design Implications 
The user study results suggest that DeepSeer helps users achieve 
a more comprehensive understanding of the assigned model, and 
perform better on model debugging compared with the baseline 
tool, LIME [53]. We believe this is largely attributed to DeepSeer’s 

interactive support for explaining the model’s global and local 
behavior. While a few studies have discussed about the importance 
of global and local explanations [24, 45], our work provides specifc 
insights on how to support global and local explanations in a unifed 
interface for RNN models. 

In DeepSeer, global explanations are mainly rendered in the 
State Diagram View and the Pattern Summary View. The abstracted 
state diagram helps users interpret the hidden states and complex 
transitions among these states, while the summarized text patterns 
help users quickly identify either infuential or buggy patterns 
learned by the model. These global explanations boost users’ under-
standing and debugging process. Despite all the benefts of global 
explanations, we found it still necessary for participants to have the 
instance-level explanation to contextualize their understanding of 
model behavior. In particular, given a specifc state or text pattern, 
user study participants often got curious about how it sounds in 
diferent texts. In the post-study survey, they highly appreciated the 
Intermediate Prediction Results feature. DeepSeer allows users to 
zoom into local explanations by actively fltering instances based on 
selected states or patterns, as well as zooming back to the model’s 
global behavior by tracing back to the state diagram. Through these 
ways, global and local explanations are served as a synergistic loop 
for model understanding and debugging. 

Furthermore, we fnd that users cared about how the given ex-
planations are derived from the internal decision-making process 
of an RNN model. When using LIME [53], 4 out of 14 participants 
using LIME questioned the explanations (highlighted keywords) 
given by LIME. For instance, P24 commented in the post-study 
survey, "I hope LIME can provide a reason why some words have a 
high sincere or insincere score." As a more tangible and actionable 
solution, DeepSeer not only communicates the correlation between 
specifc features in an input to a prediction result, but also commu-
nicates the internal decision-making process of a model. DeepSeer 
renders model’s decision-making process in two ways. First, it ren-
ders the transition between diferent internal states of the model 
in the state diagram view. Second, for an individual prediction, it 
renders the intermediate prediction results as well as their corre-
spondence to the internal states of a model. By inspecting such 
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Figure 12: DeepSeer users’ performance on model debugging 
with various levels of RNN expertise. 

a decision-making process, users can better understand how the 
model arrives at a specifc prediction and gain more trust from the 
generated explanations. 

As an interactive XAI tool, it is also important to provide users 
with interpretable explanations, especially for RNN models. Note 
that a few prior techniques have tried to visualize the decision 
process of RNN [27, 59]. However, they usually only directly visu-
alize the value of each hidden state. For instance, LSTMVis [59] 
visualizes the change of hidden state values in parallel coordinates. 
Given that hidden state values are essentially numerical values in a 
high-dimensional space, it is challenging to interpret their seman-
tic meanings. To address this challenge, DeepSeer bundles hidden 
states with associated words and phrases in a text corpus and visu-
alizes the transition between them as a state diagram. In this way, 
the internal decision-making process becomes more interpretable 
to non-experts. 

9.2 Target Users and User Expertise 
DeepSeer is designed for any developers who needs to train and 
debug an RNN model by themselves. They can be experienced ML 
developers, regular software developers who just started learning 
RNNs, or students who use RNN in a course project. In the user 
study, we recruited participants with diverse expertise in RNN, in-
cluding 4 participants with less than 1 year of RNN experience, 5 
with 1 year, 3 with 2—5 years, and 2 with more than 5 years. Our 
further analysis shows that, while participants with more RNN 
experience performed slightly better, the diference was not signif-
icant (Fig. 12). This implies the efectiveness of fDeepSeer is not 
strongly correlated to their expertise. 

9.3 Generalization to Diferent ML Tasks and 
Models 

Though our work has only evaluated DeepSeer on sentiment analy-
sis and topic modeling tasks, we believe DeepSeer can generalize to 
diferent NLP Tasks as well. To reuse DeepSeer for other tasks, one 
may consider adapting the color mapping mechanism for abstract 
states. For example, for machine translation tasks, one can color 
each state according to the part-of-speech tag. By inspecting each 
state’s color and associated words, users could interpret if an RNN 
model is translating a sentence correctly. 

In this work, we focused on RNNs, which is a representative 
model architecture for processing sequential data. In addition to 
RNNs, it may be possible to use DeepSeer to interpret RNN variants 
such as Bidirectional-LSTM [37] or Transformers [60]. While the 
principle of Bidirectional-LSTM is similar to a naive RNN, some 
adaptions to the state abstraction method are required. For instance, 
one should consider collecting the model’s hidden states when pro-
cessing the input text in both two directions. Since transformers are 
permutation-invariant, they process all words in an input sentence 
at the same time, not sequentially. Therefore, we can no longer bun-
dle a word with a hidden state. However, one can treat the output 
of each hidden layer as a concrete state. Then the transition can 
be built among diferent hidden layers instead of among diferent 
words. 

9.4 Limitations and Future Work 
One limitation of our user study design is that the comparison 
baseline, LIME [53], is designed for generating local explanations 
instead of global explanations. Thus, we cannot directly compare 
the global explanation efectiveness of DeepSeer to LIME. Besides, 
LIME is not specialized for RNN. While there are RNN-specifc 
tools, such as LSTMVis [59] and RNNVis [43], we failed to run 
them on our RNN models after several attempts due to version 
compatibility issues. Both LSTMVis and RNNVis were built years 
ago on out-of-dated DL frameworks (TensorFlow r0.12 and Torch 7), 
which can no longer be used to analyze DL models built by later 
framework versions. Signifcant eforts are needed to re-implement 
them. Therefore, we consider such re-implementation out of the 
scope of this work. An alternative solution can be creating variants 
of DeepSeer by disabling some key features as baselines, which 
can help us better attribute the success of DeepSeer to individual 
features. This is worth investigating in future work. 

As we are researchers from an R1 university, we do not have 
access to professional developers and data scientists who build RNN 
models in their work. Instead, we recruited graduate students who 
have experience in building RNN models. ML practitioners may 
share more interesting insights compared with graduate students. 

Additionally, our user study has only evaluated DeepSeer on 
RNNs for sentiment analysis and topic classifcation. To compre-
hensively investigate the usefulness of DeepSeer, one can consider 
leveraging DeepSeer to understand and debug RNN models for 
other tasks, beyond text classifcation, e.g., machine translation. 

Furthermore, our current design only supports visualizing and 
analyzing one RNN model. Once the bugs are identifed with the 
help of DeepSeer, re-training the RNN model is needed. Therefore, 
a possible future direction is to develop tool support for comparing 
two or more versions of an RNN model [46]. Besides, one can also 
improve DeepSeer by designing tool support for model tracking [4] 
and model selection [10]. 

10 CONCLUSION 
In this paper, we present a novel system called DeepSeer to help 
ML developers understand and debug recurrent neural networks. 
DeepSeer makes use of a state abstraction method that bundles 
semantically similar hidden states of an RNN model and abstracts 
it to a fnite state machine. Through DeepSeer, users can explore 
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both the model’s global and local behavior, and also debug incorrect 
predictions. We demonstrate DeepSeer’s usefulness and usability 
through a between-subjects user study with 28 model developers 
on two diferent RNN models. The results show that DeepSeer’s 
tightly-coordinated views brought developers a deeper understand-
ing of an RNN model compared with a popular XAI technique, 
LIME. Furthermore, participants using DeepSeer were able to iden-
tify the root causes of more incorrect predictions and provide more 
actionable plans to improve the RNN model. In the end, we dis-
cuss the design implications from DeepSeer, and propose several 
promising future work directions. 
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A STATE ABSTRACTION 
In this section, we present the technical details of state abstraction 
for an RNN model. The core idea is to extract all possible hidden 
states of an RNN model using training data and then group similar 
hidden states to build a fnite state machine (FSM). Algorithm A1 
shows the procedure of state abstraction of an RNN model. 

Algorithm A1: State abstraction of an RNN model. 
Input: a trained RNN model �, training data X����� , PCA 

dimension � , number of states � 
Output: PCA model � , GMM model � , an abstraction 

model � = {�, � }
1 H ← {}; 
2 for � in X����� do 
3 � ← record_hidden_states(�, �); 
4 H .append(� ); 
5 end 
6 � = PCA(H , �); 
7 � = GMM(� (H), �); 
8 return �; 

Algorithm A1 takes two inputs: a trained RNN model � and 
training data ������ , as well as two parameters: PCA (principal 
component analysis) dimension � and number of abstracted states 
�. Given a trained RNN model, we frst iterate through all the 
training data X����� to collect all possible hidden states H from the 
RNN model (Line 1:5). Line 3 records all the hidden states � in an 
RNN model when processing a specifc input instance � . Suppose 
an input instance � has � words, then � diferent hidden states will be 
produced when the RNN model processes these � words sequentially. 
For example, given the sentence “I love Machine Learning”, the RNN 
model will process four words: “I”, “love”, “machine”, and “learning” 
sequentially. Therefore, four diferent hidden state vectors will 
be produced and recorded when the RNN model processes this 
sentence. 

After recording all the hidden states using the training data, we 
create a PCA model � to reduce the dimension of these hidden 
states into � (Line 6). Meanwhile, we also obtain a PCA model � . 
Now we abstract |� (H)| dimension reduced hidden states into � 
abstracted states. Diferent from the prior work [16], which uses a 
grid-based method, we adopt a GMM (Gaussian mixture model [42]) 
� to cluster these dimension-reduced hidden states (Line 7). After 
executing Line 7, we obtain a GMM model � . Our abstracted model 
�� has now been built, which consists of a PCA model � and a 
GMM model � . Note that both PCA and GMM are implemented 
with scikit-learn with default parameters except “n_components”. 

In our usage scenario and user study, we set the PCA dimension 
� as 20 and the number of states � as 40. We further show that 
the abstraction model using this setting can provide consistent 
predictions compared with the original RNN model in Appendix B. 

B FAITHFULNESS OF STATE ABSTRACTION 
In this section, we show that the abstracted model (i.e., the fnite 
state machine) can make consistent predictions as the original 
RNN model in three diferent tasks, one from the usage scenario 

(Section 6) and the other two from the user study (Section 7.2). We 
measure the prediction consistency between the fnite state machine 
and the original RNN. Suppose the dataset is � = {�1, �2, . . . , �� }, 
the abstracted model is F , and the RNN model is R. The prediction 
consistency can be calculated through Eq. 2. Í 

�
� 
=1 F (�� ) == �(�� )

����������_����������� = (2)
� 

Table B1 shows the prediction consistency of the two models in 
each task on the training and test data separately. We can see that for 
the binary classifcation models (Toxic and Quora), the abstraction 
models can provide highly consistent predictions (consistency is 
99% and 97%) compared with the original RNN models on both 
training and test data. For the multi-classifcation model (AGNews), 
the abstraction model can still provide very consistent predictions 
(consistency is 86%). These results demonstrate the faithfulness of 
our state abstraction technique. 

C NUMBER OF ABSTRACTED STATES 
During our user study, we set the number of abstracted states to 
40. This number is empirically decided to achieve a good balance 
between the prediction consistency to the original RNN and the 
cognitive efort of inspecting a state diagram. To further show 
that this setting will not afect the abstraction model’s faithfulness, 
we report the abstracted models’ prediction consistency w.r.t. the 
number of states of all three models in Fig. C1. 

As we can see, a lower number of states will lead to a lower 
prediction consistency. However, when the number of states is 
larger than 40, the prediction consistency stays largely the same. 
Therefore, we choose this number of states, 40, throughout our 
motivating example and user study. 

D ML TASKS 

D.1 ML Task 1: Sentimental Analysis (Quora 
dataset) 

Task Description: 
In this task, participants were given an RNN model trained on 

the Quora dataset. 
Quora dataset is collected from quora.com, where each text in the 

dataset is labeled as “Sincere” or “Insincere”. An insincere question 
is defned as a question intended to make a statement rather than 
look for helpful answers. 

Participants frst used the tool to understand the model. They 
were asked to use the tool to explore the model’s behaviours and 
performance on training data and test data. After exploring, par-
ticipants were asked to share their fndings, e.g., Did they fnd any 
insights? Did they fnd any bugs? How would they improve this 
model? 

Then participants were given 5 misclassifed sentences. Partici-
pants had 10 minutes in total to fnish the following task: for each 
sentence, participants needed to fnd out why this sentence is mis-
classifed with the help of DeepSeer. 

D.2 ML Task 2: Topic Classifcation (AGNews 
dataset) 

Task Description: 

https://quora.com
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Table B1: Quantitative comparison between the abstraction model predictions to the original RNN’s predictions. 

Prediction consistency on training set Prediction consistency on test set 
Toxic 99.88% 99.88% 
Quora 97.30% 97.04% 

AGNews 86.28% 85.59% 
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(a) Prediction consistency between the original RNN model 
and the abstracted model on Toxic dataset. 
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In this task, participants were given an RNN model trained on 
the AGNews dataset. 

AGNews dataset is a collection of news articles. This RNN model 
classifes each text into diferent topics, including World, Sports, 
Business, and Sci/Tech. 

Participants frst used the tool to understand the model. They 
were asked to use the tool to explore the model’s behaviours, and 
performance on training data and test data. After exploring, par-
ticipants were asked to share their fndings, e.g., Did they fnd any 
insights? Did they fnd any bugs? How would they improve this 
model? 

Then participants were given 5 misclassifed sentences. Partici-
pants had 10 minutes in total to fnish the following task: for each 
sentence, participants needed to fnd out why this sentence is mis-
classifed with the help of DeepSeer. 

(b) Prediction consistency between the original RNN model 
and the abstracted model on Quora dataset. 
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(c) Prediction consistency between the original RNN model 
and the abstracted model on AGNews dataset. 

Figure C1: Prediction consistency w.r.t. the number of states 
of all three RNN models’ abstracted models. 
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Figure D2: The interface of DeepSeer used for ML task 1 (Quora dataset). 
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Figure D3: The interface of DeepSeer used for ML task 2 (AGNews dataset). 
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