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Figure 1: DeepLens is an interactive system for supporting out-of-distribution (OOD) data detection in NLP models. The 
developer can detect OOD issues by dynamically adjusting the threshold and observing the changes in the icon array and OOD 
score distribution. DeepLens also helps the developer explore OOD types by clustering similar texts and visualizing keywords. 
To understand OOD data, the developer can check the highlighted keywords and compare them with in-distribution (ID) data. 

ABSTRACT 
Machine Learning (ML) has been widely used in Natural Language 
Processing (NLP) applications. A fundamental assumption in ML 
is that training data and real-world data should follow a similar 
distribution. However, a deployed ML model may sufer from out-
of-distribution (OOD) issues due to distribution shifts in the real-
world data. Though many algorithms have been proposed to detect 
OOD data from text corpora, there is still a lack of interactive tool 
support for ML developers. In this work, we propose DeepLens, 
an interactive system that helps users detect and explore OOD 
issues in massive text corpora. Users can efciently explore diferent 
OOD types in DeepLens with the help of a text clustering method. 
Users can also dig into a specifc text by inspecting salient words 
highlighted through neuron activation analysis. In a within-subjects 
user study with 24 participants, participants using DeepLens were 
able to fnd nearly twice more types of OOD issues accurately with 
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22% more confdence compared with a variant of DeepLens that 
has no interaction or visualization support. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools; • Computing methodologies → Natural language pro-
cessing. 
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1 INTRODUCTION 
Machine Learning (ML) techniques and ML models have shown 
superior performance in many applications, e.g., autonomous driv-
ing [49], virtual assistant [8], and medical diagnosis [32]. Modern 
ML techniques usually assume the training data and test data follow 
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of deployed ML models [17, 21, 37]. Such performance drop further 
brings concerns about the reliability and trustworthiness of ML 
models. In particular, failing to predict OOD samples may lead to 
serious outcomes in high-stake and safety-critical applications such 
as health care [32]. In 2013, Google Flu Trends (GFT) model failed 
to predict the fu season, missing the peak of that fu season by 
140 percent [30]. One signifcant factor of the failure is that GFT 
did not take into account how users’ search behavior had changed 
since 2012 [30]. In this case, the data distribution shifted in 2013 
compared with 2012 and eventually led to poor model performance. 

To alleviate the efects of OOD data, many techniques have been 
proposed for OOD detection [4, 21, 33–35, 44, 58]. For a given data 
instance, these techniques typically frst calculate a specifc score 
(OOD score), and then compare it with a pre-defned threshold to 
determine if the data instance is OOD. However, in practice, only 
identifying OOD data is not sufcient for ML developers. For in-
stance, in the previous example of GFT, after knowing there is an 
OOD issue, developers still need to dig into the OOD data and fgure 
out why they are considered OOD and what their characteristics are. 
This is a time-consuming process. Though a recent technique [9] 
has been proposed to address this challenge, it is only designed for 
image data, not text data. Compared with images, which are more 
glanceable for humans [15], more cognitive eforts are required 
to read and understand text data. Without appropriate tool sup-
port, it can be challenging and time-consuming for developers to 
investigate a massive amount of OOD text data at scale. 

In this paper, we explore interactive tool support for helping 
users quickly detect and contextualize OOD samples from large 
text corpora. We present DeepLens, a novel interactive system 
that enables users to detect, explore, and understand OOD issues. 
DeepLens is built upon maximum softmax probability (MSP), a pop-
ular calibration-based OOD detection method for text data [4, 21]. 
To help users explore diferent types of OOD data in text corpora, 
DeepLens frst clusters similar OOD data by topics and then ren-
ders the frequent words in each cluster in a word cloud to help 
users examine and understand the topic of each cluster. As users 
delve into individual OOD instances, DeepLens highlights salient 
words in each instance via neuron activation analysis method [1]. 
In this way, DeepLens helps users quickly understand a long text 
without reading it in detail. DeepLens also renders in-distribution 
and out-of-distribution data side by side to help users compare and 
contrast them. 

To evaluate the usability and efciency of DeepLens, we con-
ducted a within-subjects user study with 24 programmers with 
various levels of expertise in ML and NLP. We created a comparison 
baseline by disabling the cluster view and the highlighting view 
in DeepLens. The results show that participants using DeepLens 
were able to fnd more types of OOD data on four diferent NLP 
tasks. The mean diference in the number of OOD types found by 
each participant using DeepLens and the baseline tool is 3.54 vs. 
1.25 (Welch’s � -test: � < 0.0001). Participants using DeepLens also 
felt more confdent about OOD issues they found in the ML models. 
The median values are 6 vs. 5 on a 7-point Likert scale (Welch’s 
�-test: � = 0.002). These results demonstrate that DeepLens can 
signifcantly improve ML developers’ productivity when dealing 
with out-of-distribution issues in NLP models. 

In summary, the main contribution of this paper is DeepLens, 
an interactive system that helps users detect, explore, and under-
stand OOD data in large text corpora. We have open-sourced our 
system on GitHub 1. A within-subjects user study demonstrates 
the efectiveness of DeepLens in detecting and analyzing diferent 
types of OOD issues on a variety of NLP tasks. 

2 BACKGROUND AND RELATED WORK 

2.1 Out-of-Distribution Issues in ML Systems 
A fundamental assumption in machine learning theory is that train-
ing and test data follow a similar distribution [42]. However, after 
model deployment, it is not uncommon to encounter real-world data 
that is out-of-distribution compared with the training data. Previous 
studies demonstrate that when feeding OOD samples, ML models 
can provide erroneous predictions with high confdence [14, 45]. 
Such errors can have serious consequences when the predictions 
inform real-world decisions such as medical diagnosis, e.g. falsely 
classifying a healthy sample as pathogenic or vice versa [3, 50, 52]. 

Over the years, there has been an ongoing efort in trying to 
understand OOD issues in ML systems. Moreno-Torres et al. [43] 
present a unifed framework to analyze the distribution shift. Given 
a classifcation task X → Y, the joint probability of � ∈ X and 
� ∈ Y can be represented as � (�, �) = � (� |�)� (�). Moreno-Torres 
et al. [43] then categorize OOD into two types: (1) covariate shift, 
where the input distribution � (�) changes, and (2) concept shift, 
where the relationship between the input and class variables � (� |�)
changes. Arora et al. [4] further extend this taxonomy to NLP tasks. 
They assume text data can be represented as background features 
(e.g. genre) that are invariant across diferent labels, and seman-
tic features (e.g. sentiment words) that are discriminative for the 
prediction task. Therefore, they defne the change of background 
features as background shift and the distribution change of semantic 
features as semantic shift. In this work, we follow the OOD taxon-
omy and terminologies by Arora et al. [4], since our work focuses 
on OOD issues in text data. 

2.2 OOD Detection 
There is a large body of literature on OOD detection in the ML 
community. Most of the prior work calculates an OOD score for 
each input, and uses a threshold to separate ID data from OOD data. 
Hendrycks et al. [21] frst propose a simple method to detect OOD 
samples, representing one of the earliest attempts in this direction. 
They utilize the probability of a prediction (i.e., model confdence) 
as the indicator for OOD issues, in which a lower probability yields 
a higher OOD score. However, since DL models often “confdently” 
make errors [45], only leveraging model confdence hinders further 
improvement of OOD detection. To address this issue, some recent 
work proposes to train a calibrated model, so it can give predic-
tions with low confdence on OOD data. The calibrated model can 
be obtained via data augmentation [22, 57, 62], adversarial train-
ing [7, 10, 20], and uncertainty modelling [5, 40]. Another line of 
work to address the model confdence barrier is to leverage other 
indicators for OOD detection [4, 33–35, 44, 58]. One of the repre-
sentative works is ODIN [33], which uses temperature scaling and 

1https://github.com/momentum-lab-workspace/DeepLens 
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input perturbation for OOD score computation. Furthermore, OOD 
detection can also be achieved by estimating the ID distribution 
and measuring how far the input instance is from the ID distri-
bution [26, 29, 31]. In this work, we develop DeepLens on top of 
an OOD algorithm by Arora et al. [4], which utilizes maximum 
softmax probability (MSP) for OOD detection in text corpora. 

So far, most eforts have been put into improving the accuracy of 
OOD detection algorithms. However, only providing an OOD score 
and a list of OOD samples is insufcient for humans to understand 
and reason about OOD data. DeepLens flls the gap by providing an 
interactive system that helps developers explore OOD data detected 
from large text corpora and understand their characteristics. 

2.3 Interactive Support for OOD Detection 
In the past two years, there has been a growing interest in providing 
interactive tool support for detecting distribution change [9, 46, 
47, 59–61]. OoDAnalyzer [9], an interactive system for analyzing 
OOD issues in image data. It provides a grid-based visualization 
that shows individual OOD images in a grid view. Furthermore, it 
allows users to zoom into individual OOD instances and highlights 
the parts of an image that contributes signifcantly to the prediction 
result. The main diference between OoDAnalyzer and DeepLens is 
that OoDAnalyzer focuses on image data while DeepLens focuses 
on text data. Compared with text data, images are more glance-
able. Thus, the interface design in OoDAnalyzer is not applicable to 
OOD analysis in text corpora. To fll the gap, DeepLens leverages 
a text clustering method and also highlights salient words in indi-
vidual text documents to help users explore and understand OOD 
instances. 

Data drift detection is closely related to OOD detection. 
Yeshchenko et al. propose Visual Drift Detection (VDD) [61], a 
visualization and interaction system for detecting and analyzing 
business process drift. By utilizing a set of interactive charts, VDD 
presents the business process drift (event sequence data) in a time-
dependent way. Wang et al. present ConceptExplorer [59], a visual 
analytics system for analyzing concept drifts from multi-source 
time-series data. Yang et al. propose DriftVis [60], an visual analyt-
ics system for analyzing concept drift in streaming data. It utilizes 
an incremental Gaussian mixture model to detect samples with con-
cept drift and presents prediction-level visualization that reveals 
the performance change of the target model. DriftVis is specif-
cally designed for concept drift (i.e., semantic shift in NLP), while 
DeepLens does not have a specialized design for a particular type 
of distribution shift and thus can be applied to both shift types. 

3 USER NEEDS AND DESIGN RATIONALE 
In this section, we frst analyze ML practitioners’ needs for interac-
tive OOD detection based on the literature review. Then, we discuss 
how our proposed system supports these needs through a system 
overview. 

3.1 User Needs in Detecting and Diagnosing 
OOD Issues in ML 

To understand the needs of ML practitioners, we conduct a literature 
review of previous work that has done a formative study of OOD 
detection [9, 47, 60, 61], has done a user study [46, 59], or has 

discussed the challenges in handling OOD issues [38, 51]. Based on 
this review, we summarize fve major user needs for OOD detection. 
N1: Automatically detect OOD data. Manually inspecting individ-
ual instances to identify data distribution shifts is time-consuming 
and cumbersome [59, 61]. By working closely with their industry 
partners, Yeshchenko et al. [61] found that industrial practitioners 
demanded the distribution shift be identifed promptly and pre-
cisely. Therefore, DeepLens should automatically detect OOD data 
based on user-defned criteria. The expert review in Wang et al. [59] 
also confrmed the necessity of automated OOD detection in large 
datasets. 
N2: Understanding why a sample is detected as OOD. Recent 
studies [38, 47, 59, 60] show that only detecting OOD samples is in-
sufcient. In practice, ML practitioners are often also eager to know 
why those samples are out of distribution. For instance, Yang et 
al. [60] interviewed four ML practitioners and found that, instead 
of simply obtaining the detected OOD samples, ML practitioners 
desired to know why and where the distribution shift occurred. 
In another interview study with four data scientists, Palmeiro et 
al. [47] found that data scientists wanted to know which parts of 
the dataset include data shift as well as the patterns of data shift. 
N3: Identifying diferent types of OOD data. Diferent OOD 
instances may have diferent characteristics. Therefore, ML prac-
titioners want to categorize OOD data to better understand their 
commonalities and variations, so that they can come up with a 
more comprehensive strategy to consider the impacts brought by 
data shift [9, 51, 59, 61]. For example, Wang et al. [59] highlighted 
that users should be able to discriminate diferent types of data and 
verify the distribution shift of each type. In an interview study with 
both ML developers and ML users, Chen et al. [9] reported that 
the ML developers and ML users both desired to visually explore 
diferent types of OOD samples and their relationships to reduce 
the samples that need to be inspected. 
N4: Comparing OOD with ID data. Chen et al. [9] found that 
comparing OOD samples with ID samples under the same predicted 
label was helpful for users to confrm potential OOD issues. Olson 
et al. [46] conducted a user study with sixty ML users and found that 
users often compared OOD samples with ID samples to understand 
the characteristics of OOD samples. 
N5: Investigating OOD issues from both global and local per-
spectives. When inspecting OOD issues, users tend to frst explore 
diferent categories of potential OOD data and then delve into a 
category of interest to compare an OOD sample with similar ID 
samples [9]. Yeshchenko et al. [61] highlighted the importance of 
supporting “drill-down” and “roll-up” analysis on OOD data to allow 
users to fexibly investigate OOD issues from diferent granularity. 

3.2 Design Rationale 
To support N1, DeepLens leverages a calibration-based method [21] 
to automatically detect OOD data in a large text corpus. Users can 
observe the percentage of OOD instances in the test data in the 
Distribution View (Fig. 2 ○A ) and adjust to what extent an instance 
should be considered as OOD via the threshold slider. To help users 
better understand why some instances are detected as OOD data 
(N2), DeepLens allows users to compare an OOD instance and 
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Figure 2: DeepLens, an interactive system for detecting and identifying OOD samples in the text data. (A) The Distribution 
View allows users to adjust thresholds and inspect OOD issues in test data dynamically. (B) The Instance View displays the 
in-distribution (ID) and out-of-distribution (OOD) data in two separate interactive data grids. (C) The Cluster View displays 
the clustering results and keywords for each cluster for exploring potential OOD types. (D) The Highlighting View shows the 
highlighted salient words on selected data instances to ease users’ reading eforts. 

an ID instance side by side and examine the commonalities and 
variations between them (Fig. 2 ○B ). Furthermore, as some instances 
are lengthy, DeepLens leverages neuron activity analysis [23] to 
identify and highlight salient words in an instance, so users can 
quickly grasp the underlying topic(s) in the instance (Fig. 2 ○D ). By 
directly comparing the diferences between highlighted words in an 
OOD data and an ID data, users can easily identify potential topic 
diferences between those two instances without the necessity of 
reading through the entire text document. 

To assist users in identifying diferent types of OOD data (N3), 
DeepLens clusters the detected OOD instances and renders them 
in a scatter plot (Fig. 2 ○C ). The common words in a cluster are 
visualized as a word cloud to help users understand its underlying 

topics (Fig. 2 ○C ). This cluster view, together with the word cloud, 
helps users obtain a global understanding of when and where data 
shifts occur in the dataset (N5). To support the “drill-down” analysis 
mentioned in (N5), DeepLens allows users to delve into a specifc 
cluster by clicking on a node in that cluster or a cluster legend. The 
instance view will be fltered accordingly. To support the “roll-up” 
analysis mentioned in (N5), DeepLens highlights the user-selected 
instances in the cluster view, so users can easily see where the 
selected instances are in the global view. Finally, to support N4, 
DeepLens allows users to flter the instances by prediction labels 
in the Instance View and then select OOD and ID instances with the 
same prediction label to compare side-by-side. The salient word 
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Figure 3: Users can adjust the threshold of the OOD score and inspect OOD issues in the Distribution View. 

highlighting feature also helps users quickly see the commonalities 
and variations between the OOD and ID instances. 

4 DESIGN AND IMPLEMENTATION 
In this section, we follow the 3-step usage of DeepLens (Fig. 1) to 
introduce its design and implementation: (1) detect OOD issues, (2) 
explore OOD types, and (3) understand OOD data. 

4.1 Interactive OOD Text Detection 
OOD Detection Method. Given a data instance � , an OOD detection 
method frst computes an OOD score � (�). If � (�) > � (a pre-defned 
threshold), then � is considered as an OOD sample. DeepLens 
leverages a calibration-based method, MSP (maximum softmax 
probability) [21], to compute the OOD score. A higher MSP means 
the model is highly confdent with the prediction, thus a lower MSP 
indicates the given data instance � is more likely to be an OOD 
sample. Given a probabilistic classifer C, 

� (�) = 1 − max C(� = � |�) (1) 
� 

where � ∈ 1, . . . , � denotes class label � and � denotes the pre-
diction of � . Note that a probabilistic classifer typically exists in 
an NLP model even if it is not for classifcation. For instance, a 
probabilistic classifer exists when projecting hidden states into the 
vocabulary. 
Distribution View. DeepLens allows users to adjust the threshold 
of OOD detection dynamically via adjusting the slider (Fig. 3 ○A ). 
When the threshold is updated, the icon arrays (Fig. 3 ○B ) will 
also be updated accordingly. We chose to use icon arrays since it 
provides a discrete-event representation and has been proven to 
lead to more accurate interpretation of numbers and require lower 

numeracy, compared with alternative visualizations such as pie 
charts and bar charts [13, 28]. Users can inspect icon arrays at a 
glance to quickly understand how many OOD samples might exist 
in the test data. To validate if an optimal threshold is set, users can 
check the OOD score distribution (Fig. 3 ○C ) across training and test 
data. Ideally, an optimal threshold should distinguish ID and OOD 
data as accurately as possible. DeepLens provides a pre-computed 
threshold to help non-experts efciently decide the threshold. 
Instance View. This view contains two separate scrollable data 
grids of the ID and OOD data (Fig. 4). When users change the thresh-
old of the OOD score, the instance view will update accordingly. 
The rows of each data grid are individual data instances, and the 
columns are: index, model prediction result, clustering result, raw 
text, and OOD score of each data instance. By default, the data grids 
including OOD data and ID data are sorted in descending and as-
cending orders according to OOD scores, respectively. Users can 
also flter, search, or sort each data grid to explore a data instance. 

4.2 OOD Text Categorization and Exploration 
Text Clustering. To help users efciently explore topics of detected 
OOD samples, DeepLens uses a text clustering algorithm to cate-
gorize diferent types of texts. Algorithm 1 depicts the clustering 
algorithm. Given an NLP model � , the algorithm frst extracts hid-
den features for each text of new test data (Line 1-5). While the 
extracted features F are usually sparse and high-dimensional vec-
tors, DeepLens applies PCA (principal component analysis) [27] to 
reduce their dimensions to � (line 6). Then, DeepLens uses KMeans 
clustering algorithm [36] to cluster processed hidden features F� 
(Line 7-9). To decide an optimal number of clusters ���� , DeepLens 
leverages Silhouette method [53] (Line 10). During implementation, 
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Figure 4: Interaction with the Instance View. 

Algorithm 1: A semantic text clustering algorithm. 
Input: an NLP model � , new test data X, maximum 

number of clusters ���� , PCA dimension � 
Output: cluster label Y 

1 F ← {}; 
2 for � in X do 
3 � ← extract_features(�, �); 
4 F .append(� ); 
5 end 
6 F� ← PCA(F , �); 
7 for � ← 1, . . . , ���� do 
8 Y� = KMeans(Fp, n); 
9 end 

10 ���� ← max Silhouete(Y�, F� );
� 

11 return Y���� ; 

we set the maximum number of clusters as ���� = 200, and the 
PCA dimension as � = 128. These numbers are decided empirically. 
Keywords Summarization. After each cluster is determined, 
DeepLens summarizes a few keywords from an individual clus-
ter to help users identify its potential topic(s). To achieve this, 
DeepLens frst flters out “stop words” [6] from each data and then 
uses CountVectorizer algorithm [48] to extract keywords. For each 
cluster, DeepLens displays top-10 frequent keywords as a word 
cloud. Through inspecting the word cloud, users can quickly under-
stand what kind of text patterns the selected cluster might include. 
Cluster View. DeepLens integrates the clustering results and sum-
marized keywords in the cluster view (Fig. 5). The cluster view 
consists of a scatter plot and a word cloud. Each node in the scatter 
plot represents an individual data instance. The position of each 
node is determined by the frst three components of the hidden 
features of each text after PCA. The color assigned to each node 
represents the cluster index. When users hover on a node, a tool-tip 
will pop up showing the prediction label and OOD score of the cor-
responding data instance (Fig. 5 ○B ). When users click on a node, 

the corresponding data instance will also be selected in the instance 
view. These features allow users to contextualize the clustering 
results with specifc data instances and texts. Users can also focus 
on one cluster by clicking on the legend (Fig. 5 ○A ). Once a cluster 
is selected, DeepLens will update the word cloud (Fig. 5 ○C ) and 
flter out data excluded in the selected cluster in the instance view. 

4.3 OOD Text Explanation 
Salient Words Selection. The previous sections introduce how 
users can efciently inspect OOD issues and identify potential 
OOD types. By inspecting the cluster view, users might already 
have hypotheses about potential OOD types and their topics based 
on several data instances. DeepLens further supports digging into 
specifc instance(s). To achieve this, DeepLens uses neuron acti-
vation analysis [23] to select salient words in a text. By checking 
small groups of highlighted words, users can avoid reading a long 
paragraph of text in detail. We describe the algorithm of salient 
words selection in Algorithm 2. At a high level, DeepLens leverages 
ecco [1] to extract and factorize neuron activation information. 
For a given text � , DeepLens frst extract neuron activation values 
A by passing it through a large pre-trained language model � 
(Line 2). Then DeepLens uses Non-negative matrix factorization to 
factorize the extracted activation values into � components (Line 
3). In this way, DeepLens can group similar words in a text into 
� groups. To further reduce users’ mental demands, we flter out 
groups containing stop words or special tokens (e.g., punctuation) 
(Line 4-14). Finally, for each group, DeepLens only highlights 10 
words with the highest activation values. This helps preserve only 
the most important words in a group. In our implementation, we 
use a pre-trained BERT [12] released on HuggingFace 2 without any 
fne-tuning. The number of factors � is set to 10, and only top-10 
salient words are highlighted. 
Highlighting View. In this view, DeepLens leverages the visual-
ization of ecco [1] to visualize highlighted salient words (Fig. 6). 
The sparklines on the left of each text box visualize the positions of 
similar salient words in the text. Each sparkline represents a group 

2https://huggingface.co/bert-base-uncased 
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Figure 5: Users can inspect and interact with text clustering results in the Cluster View. 

Algorithm 2: Salient words selection. 
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Input: A text input � , a pre-trained language model � , 
number of factors �, number of words in text � 

Output: Highlighted keywords S 
S ← ∅; 
A ← get_activation(�, �); 
S̃ ← NMF(A, �); 
for � ← 1, . . . , �; 
do 

for � ← 1, . . . , � ; 
do 

if � � is stop word or special tokens then 
S� ← ∅; 

else Ð ˜S ← S S� ; 
end 

end 
end 
return S; 

of similar salient words. The color of a sparkline is the same as the 
color of the corresponding group of salient words. The x-axis is the 
index of a word in the text, and the y-axis indicates the saliency 
score of a word. Users can hover on diferent lines to inspect dif-
ferent groups of salient words. For each group of salient words, a 
darker color indicates a higher activation value. While previous 
studies have shown that it is important to allow users to understand 
a concept through a contrastive way [41], DeepLens allows users to 
pin multiple ID or OOD instances at the same time to contextualize 
the OOD topics. When users click a node in the cluster view or an 

instance in the instance view, this instance will be pinned at the top 
of the instance view. At the same time, the salient words of each 
selected instance will be displayed in the highlighting view. 

4.4 Implementation 
We implement and deploy DeepLens as a web application. The 
interface of DeepLens (Fig. 2) is implemented with Material UI 3. We 
use D3.js 4 for visualizing scatter plots. All machine learning models 
were implemented with PyTorch and Scikit-learn and trained on 
one NVIDIA A6000 GPU. We deployed DeepLens on an AWS EC2 
for ease of access during the user study. 

5 USAGE SCENARIO 
Suppose Alice is a model developer and she has trained an ML model 
to classify text documents into two diferent topics: IT (informa-
tion technology) and Fundamental Science. Her model achieves 94% 
accuracy on the training data. However, her model’s performance 
signifcantly drops when Alice deploys it online. Alice suspects such 
performance degradation is caused by out-of-distribution (OOD) 
issues in the new data. Alice runs an OOD detection program on the 
new data and fnds that 49% of the new data (400 data instances) are 
detected as OOD data. Alice wants to understand the characteris-
tics of these data, so she can strategically apply data augmentation 
techniques to improve the training data. However, she fnds it time-
consuming to manually check the 400 OOD samples and understand 
why they are categorized as OOD. Furthermore, since each text 
document is lengthy, Alice fnds it hard to glance it over and quickly 
understand the gist of the document. 

Alice decides to give DeepLens a try. She frst checks the Distribu-
tion View, where two icon arrays (Fig. 3 ○B ) showing the proportion 

3https://mui.com
4https://d3js.org 

https://4https://d3js.org
https://3https://mui.com
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ID/OOD instances

Figure 6: The Highlighting View helps users quickly understand specifc ID/OOD data instances. 

of in-distribution and out-of-distribution samples in training and 
test data, respectively. She fnds that compared with training data, 
a large proportion of test data are out-of-distribution samples. She 
also attends to the OOD score distribution (Fig. 3 ○C ), where the 
OOD score distribution of training and test data are diferent. She 
confrms that OOD samples exist in her test data and could have 
caused her model’s performance degradation. 

Alice wonders what kinds of instances are detected as OOD 
samples by DeepLens. Therefore she turns to the Instance View 
(Fig. 2 ○B ), where the OOD and ID data are displayed in two separate 
data grids. Alice fnds that instances with high OOD scores are very 
suspicious. Since browsing each data instance will take too much 
time, Alice decides to switch to the Cluster View (Fig. 2 ○C ) to get 
an overview frst. This view contains a scatter plot where each 
data instance is rendered as a node, and similar data instances are 
clustered and colored with the same color. By default, the Cluster 
View only shows OOD data. Alice fnds it obvious that each cluster 
contains a diferent number of OOD nodes. Then she explores the 
exact number of OOD nodes in each cluster by hovering over the 
legends. There are many OOD nodes in Cluster 1 and 2, but much 
fewer in Cluster 0 and 3 (Fig. 5 ○A ). Alice thinks Cluster 1 and 2 
may include two new OOD types. 

Now Alice wants to take a deeper look at Cluster 1. By clicking 
the corresponding legend, the Cluster View is updated and only 
displays OOD nodes of Cluster 1 (Fig. 5 ○B ). The Instance View 
also flters out the data instances that are not in Cluster 1. The 
word cloud shows that Cluster 1 has several frequent keywords, e.g., 
“players”, “game”, “team” (Fig. 5 ○C ). Alice realizes the topic of this 
cluster could be Sports. This is an obvious sign of a new category in 
the OOD data, which is not initially included in the training data. 

Alice clicks a node in Cluster 1. Then, the selected instance is 
pinned at the top of the Instance View. While the selected sentence 

is very long and takes time to read, Alice decides to check the 
highlighted words in the Highlighting View (Fig. 6 ○B ). These salient 
words help her focus on the essential information and ignore the 
unnecessary words in the sentence. Alice notices that there are a few 
words highlighted, e.g., “defensive”, “power play”. These keywords 
further confrm Alice’s belief that a new category is Sports. 

To further validate her belief, Alice continues to check whether 
this category exists in the in-distribution data. She clicks on the 
frst sentence in the ID table of the Instance View, which is pre-
dicted as Fundamental Science (Fig. 6 ○A ). The salient words high-
lighted in this sentence are: “medical”, “stones”, “mitigate”, and 
“treat” (Fig. 6 ○C ). All these words are usually from Fundamental 
Science articles. Then, Alice clicks into several other OOD instances 
near the current OOD instance and confrms that Sports is a new 
topic in the OOD data. 

6 USER STUDY 
To evaluate the efectiveness and usability of DeepLens, we con-
ducted a within-subjects user study with 24 programmers with var-
ious levels of machine learning expertise. To better understand the 
value of proposed features in DeepLens, we compared DeepLens 
with a variant of DeepLens as the baseline by disabling the Cluster 
View and the Highlighting View. 

6.1 Participants 
We recruited 24 participants through mailing lists of the ECE and 
CS departments at the University of Alberta 5. All participants have 
basic knowledge about machine learning. 10 participants were Mas-
ter students, 10 were Ph.D. students, 3 were professional developers, 
and 1 was a data scientist. Participants were asked to self-report 
their machine learning expertise. 12 participants had 2-5 years of 
5This human-participated study is approved by the university’s research ethics ofce. 
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Table 1: Designed tasks for the user study. 

# 

1 

Task 

Topic classifcation 

Description 

Predict topic of a paragraph 
of text from Wikipedia. 

ID data 

DBPedia 
top-4 [64]† 

OOD data 

DBPedia 
rest [64]† 

Distribution shift type 

Semantic shift 

2 Sentiment analysis Predict sentiment of a 
review text. 

IMDB [39] Yelp [64] Background shift 

3 Emotion recognition Recognize the emotion 
from a given text. 

Emotion 
Negative-2 [54]‡ 

Emotion 
rest [54]‡ 

Semantic shift 

4 Fake news detection Detect if a news article 
is real or fake. 

PolitiFact [55] COVID-19 
Fake News [11] 
GossipCop [55] 

Background shift 

† DBPedia dataset has 14 classes. We denote DBPedia top-4 as a subset including the frst 4 classes (Company, Educational Ins-
titution, Artist, and Athlete) according to class IDs, and DBPedia rest as a subset including the other 10 classes. 
‡ Emotion dataset has 6 classes. We denote Emotion Negative-2 as a subset including 2 negative Emotion classes (Sadness and 
Fear), and Emotion rest as a subset including the other 4 classes. 

experience, 1 had more than 5 years, and 11 only had 1 year. Regard-
ing NLP experience, 5 participants had 2-5 years of experience, and 
19 only had 1 year. 20 participants mentioned that they had heard 
about out-of-distribution or distribution shift problems before. All 
study sessions were conducted on Zoom. Both DeepLens and base-
line were deployed as web applications, therefore participants were 
able to access our study sessions from their own PCs. 

6.2 Tasks 
We designed four tasks that cover diferent kinds of distribution 
shifts in the NLP domain. Table 1 shows the details of each user 
study task. When designing tasks, we follow these requirements: 
(1) the tasks should be representative ones in the NLP domain and 
(2) the tasks should cover two diferent types of distribution shift. 
To achieve these goals, we collected four tasks from prior work 
about OOD detection in NLP and well-known public benchmarks 
for NLP models. For each task, we adopt a BERT model [12] as 
the backbone and fne-tune its performance on the ID data. For 
a fair comparison, the baseline tool and DeepLens use the same 
pre-computed OOD threshold on each task. More details such as 
models’ training settings and example interfaces for each task can 
be found in Appendix A. 

6.3 Protocol 
Each user study session took about 60 minutes. At the beginning 
of each session, we asked participants for their consent to record. 
Participants were assigned two tasks about identifying OOD issues, 
one to be completed with DeepLens and the other to be the baseline 
tool. To mitigate the learning efect, both task assignment order and 
tool assignment order were counterbalanced across participants. 
In total, 6 participants experienced each task. Participants were 
asked to watch a 5-min tutorial video of the assigned tool before 
starting each task, followed by a 5-min practice period to familiarize 
themselves with the tool. Then, participants were given 20 minutes 
to use the assigned tool to inspect and identify OOD issues within 
the given model and dataset. In particular, participants were asked 
to answer/report: 
(1) What kind of data distribution shift does it belong to? 

(2) How many diferent types of OOD data did you fnd? 
(3) For each diferent type of OOD, please explain why you think 

it is OOD and list the indexes of the OOD instance that belong 
to this type. 
After completing each task, participants flled out a post-task 

survey to give feedback about what they liked or disliked. Partici-
pants were also asked to answer fve NASA Task Load Index (TLX) 
questions [19] as a part of the post-task survey. After completing 
both two tasks, participants flled out a fnal survey, where they di-
rectly compared two assigned tools. At the end of the study session, 
each participant received a $25 Amazon gift card as compensation 
for their time. 

7 RESULTS 
In this section, we report and analyze the diference in participants’ 
performance when using DeepLens and the baseline tool. We de-
note the participant as P# in the following. 

7.1 User Performance 
Table 2 shows participants’ performance on four tasks of identify-
ing OOD issues. We found that all 24 participants using DeepLens 
correctly identifed the type of data distribution shift (i.e., back-
ground vs. semantic shift) in the assigned model, while 2 out of 24 
participants using the baseline method failed. 

To further assess participants’ performance, we manually in-
spected participants’ answers to check their correctness. A correct 
OOD type should (1) include the word(s) that are representative 
of a group of data instances, and (2) be signifcantly diferent from 
ID data. Overall, we found that participants using DeepLens were 
able to fnd more types of OOD on all four diferent tasks compared 
with participants using the baseline tool. Regarding Task 1 and 
Task 3 (semantic shift), the average number of OOD types found 
by each participant using DeepLens is 7 and 3.5 respectively. By 
contrast, the average number is 2.3 and 1.2 respectively when using 
the baseline tool. The Welch’s �-test suggests that the performance 
diferences are signifcant in both cases (�-value < 0.001). Regard-
ing Task 2 and Task 4 (background shift), most participants using 
the baseline tool were only able to fnd 1 type of OOD (mean: 1 
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Table 2: User performance in four diferent tasks. 

Task 1 Task 2 Task 3 Task 4 
Semantic Shift Background Shift Semantic Shift Background Shift 

Baseline DeepLens Baseline DeepLens Baseline DeepLens Baseline DeepLens 

# of participants correctly 5 6 5 6 6 6 6 6identifed shift type 
# of correct Min 1/10 4/10 1/2 1/2 0/4 3/4 0/2 2/2 
OOD Types Med 2/10 7.5/10 

Welch’s � -test 

1/2 2/2 1/4 3.5/4 0.5/2 2/2 
found per Max 4/10 8/10 1/2 2/2 2/4 4/4 1/2 2/2 
participant Mean 2.3/10 7/10 1/2 1.7/2 1.2/4 3.5/4 0.5/2 2/2 

Δ = 4.7 Δ = 0.7 Δ = 2.3 Δ = 1.5 
� = 6.14, � < 0.001 � = 3.16, � = 0.010 � = 6.14, � < 0.001 � = 6.71, � = 0.001 

and 0.5 respectively). By contrast, participants using DeepLens 
were able to fnd 1.7 and 2 types of OOD on average in these two 
tasks respectively. The Welch’s �-test suggests that the performance 
diferences are signifcant (�-value = 0.010 and �-value = 0.001). 

We analyzed the post-task survey responses and the recordings 
to understand why participants using DeepLens performed bet-
ter. We found that DeepLens users’ success mainly come from the 
Cluster View and the Highlighting View. First, the cluster view sig-
nifcantly sped up the process of fnding OOD types. 23 out of 24 
participants had heavily utilized the clustering view to explore OOD 
data. By contrast, participants using the baseline tool had to inspect 
OOD instances one by one. P16 wrote, “[when using the baseline 
tool], it is tedious to go through all the data point one by one especially 
when there are a lot of them.” In the post-task survey, 22 out of 24 
participants also agreed that the clustering results were helpful. 
P17 said, “by going through clusters, I can fnd trends faster than 
by going through individual data points.” Besides, the summarized 
keywords of each cluster were also found helpful. Based on the 
recordings, 19 out of 24 participants started their exploration from 
these keywords. By contrast, participants using the baseline tool 
usually started their exploration by randomly picking an instance. 
P20 said, “[when using DeepLens,] I can use the keywords extracted in 
the cluster and put that in the flter to fnd more OOD instances of the 
same type.” P21 commented, “In my using experience, [DeepLens] 
helps me a lot in quickly summarizing background shift keywords. 

In addition, the highlighting view in DeepLens helped partici-
pants avoid incorrect OOD types. In our user study, the median num-
ber of incorrect OOD types found per participant using DeepLens 
is 0, while the corresponding number of participants using the 
baseline tool is 1. The mean diference of incorrect OOD types is 
0.52 vs. 1.64 (Welch’s �-test: � = 0.009). One specifc reason is that 
when using DeepLens, participants were able to compare the OOD 
data with the ID data to confrm a new OOD type. In the post-task 
survey, 17 out of 24 participants marked the comparison of ID and 
OOD data as helpful. Furthermore, when comparing the ID and 
OOD data, the highlighted keywords also helped participants avoid 
misunderstanding a long text. In the post-task survey, 18 out of 24 
participants agreed that seeing the highlighted keywords was help-
ful. P9 said, “when verifying my hypothesis about whether a certain 
sentence belongs to OOD data, DeepLens is helpful because it shows 
several highlighted keywords and reduces my time consumption.” By 

1 2 3 4 5 6 7
Strongly disagree            Neutral              Strongly agree

1 2

13

8

2 1 1

11

8

2

median: 6.0median: 5.0

I felt confident about the OOD
issues that I found in this task.

Paricipants using DeepLens Paricipants using the baseline

Figure 7: Users’ self-ratings about their task performance. 

contrast, P11 commented, “It is not easy to read the whole text [when 
using the baseline tool].” 

We have also further analyzed the impact of the OOD threshold 
adjustment feature on user performance. We found that only two 
users (P6 and P14) had tried to adjust the threshold, and they even-
tually reset it to the pre-computed one. A plausible explanation 
is that the default threshold has already provided a good starting 
point for users to investigate OOD issues. Thus, we believe the OOD 
threshold in the distribution view may have little impact on user 
performance. Since this threshold adjustment feature is present in 
both conditions, the better user performance of DeepLens comes 
directly from the cluster and highlighting views. 

7.2 User Confdence and Cognitive Overhead 
In the post-task survey, participants self-reported their confdence 
about OOD issues they identifed with help of the assigned tool in 
two diferent 7-point Likert scale questions. Figure 7 shows partici-
pants’ assessments when using DeepLens and the baseline tool. We 
found that participants using DeepLens were more confdent about 
the OOD issues they found, where the median confdence ratings 
are 6 vs. 5. The mean diference is 1.12 (6.17 vs. 5.04), which is statis-
tically signifcant (Welch’s �-test: �-value = 0.002). This confdence 
improvement was largely attributed to DeepLens’s Cluster View. 
P5 commented, “The automatic clustering function works quite well, 
and the keyword summary is quite useful to have an overview.” P16 
said, “By clustering the data, DeepLens makes keywords in the word 
cloud better indicators when identifying OOD issues. 
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Figure 8: NASA Task Load Index Ratings. Entries with a star 
(*) mean the mean diference is statistically signifcant. 

Figure 8 shows participants’ ratings on the fve cognitive fac-
tors of the NASA TLX questionnaire. Though DeepLens has more 
features and renders more information, we fnd that there was no 
signifcant diference when using DeepLens and the baseline tool 
in terms of mental demand, hurry, efort, and frustration (Welch’s 
�-test: � = 0.22, � = 0.24, � = 0.26, � = 0.75). However, participants 
using DeepLens felt they have better performance compared with 
participants using the baseline tool (mean diference: 0.88, Welch’s 
�-test: � = 0.049). This indicates that DeepLens is more efective 
and useful when helping users inspect and identify OOD issues in 
an ML model compared with the baseline tool. 

7.3 User Ratings of Individual Features 
In the post-task survey, participants rated the key features of 
DeepLens. Among 24 participants, 23 participants indicated that 
they would like to use DeepLens when solving OOD problems 
in their own ML models, while 1 participant stayed neutral. The 
median rating is 6 on a 7-point Likert scale (1—I don’t want to use it 
at all, 7—I will defnitely use it). As shown in Fig. 9, participants felt 
DeepLens’s interface and interactive features intuitive and helpful. 
The Cluster View is most appreciated by participants. 22 out of 24 
participants agreed that “it was helpful to see the clustering results.” 
The median rating of the cluster view is 6. P17 commented, “I like 
that it [DeepLens] had clustering, for instance, it was super quick to 
fnd "covid" and "entertainment" OOD categories using this feature.” 
P20 commented, “DeepLens has the cluster and keyword visualiza-
tion which can help me identify a type of OOD quickly.” Besides, 
18 out of 24 participants agreed that “seeing highlighted keywords 
was helpful.” The median rating of the Highlighting View is 6. 
P24 commented in the post-task survey, “[DeepLens] brings me less 
reading and easy to focus on the details” 17 out of 24 participants 
also found comparing ID and OOD data helpful (median rating: 6). 

7.4 User Preference and Feedback 
In the fnal survey, participants self-reported their preference be-
tween DeepLens and the baseline tool (Figure 10). 23 out of 24 
participants reported that DeepLens was more helpful (median 
rating: 6) and they preferred to use it in practice (median rating: 
6). We coded participants’ responses to this question and identi-
fed 2 diferent themes. First, 17 participants mentioned that the 

Cluster View makes it easier when identifying and analyzing OOD 
issues. P23 commented, “keywords [in the cluster view] are useful 
when facing a large dataset.” P13 said, “[the cluster view] gives a 
visual representation of the data, which makes it easier to identify 
the OOD data.” Second, 5 participants credited their success to the 
Highlighting View. P9 said, “highlighted keywords reduce my time 
consumption and make it easy to tell whether a data instance is OOD.” 

Participants also pointed out some limitations in the current form 
of DeepLens. 2 participants commented that it would be better if 
the keywords summarization in DeepLens could be improved. P21 
said, “there are some meaning-less high-frequency words which might 
disturb.” 4 participants suggested improving the usability of flters 
in the instance view, e.g., by allowing users to add multiple flter 
conditions at the same time. 1 participant mentioned that a semantic 
word search function (i.e., matching semantically similar words 
instead of identical ones) would assist their exploration process. 

8 DISCUSSION 

8.1 Design Implications 
The user study results suggest that, with the help of DeepLens, 
users are able to fnd more types of OOD data with more conf-
dence compared with using the baseline tool. Though addressing 
OOD issues is an urgent topic for deploying safe and reliable AI 
services [52], most eforts have been devoted to improving the 
algorithm accuracy of OOD detection. Our work indicates that 
only detecting OOD samples is not sufcient for improving model 
developers’ productivity, especially when the dataset is large and 
the types of OOD are diverse. It is equally important to facilitate 
developers to understand and explore diferent types of OOD data 
in large text corpora. Once developers have gained deep insights 
of the OOD data in their datasets, they can further make strategic 
decisions to improve the model, e.g., data augmentation or selection 
for model retraining. 

During the continuous delivery of machine learning models, the 
number of newly collected data can be massive. To reduce the cog-
nitive efort of exploring diferent types of OOD instances in the 
new data, it is essential to summarize a small number of potential 
OOD types for developers. DeepLens addresses this by leveraging 
a text clustering algorithm. Furthermore, the interactive cluster 
exploration support in DeepLens preserves the user’s control over 
verifying each type of OOD data. This is aligned with one of the 
human-AI interaction guidelines—providing several suggestions in-
stead of fully automating the process [2]. Based on the user study 
results, we fnd that such a semi-automated process of exploring 
OOD data improves participants’ performance and confdence. 

While clustering results do not directly tell users what exactly an 
OOD type is, the summarized keywords from each cluster serve as 
the starting point for exploration. In the fnal-study survey of our 
user study, 7 out of 23 participants who preferred to use DeepLens 
in practice explicitly mentioned how summarized keywords had 
assisted them. Previous work [9] has shown that one important re-
quirement when designing an interactive system for OOD detection 
in image data is examining OOD samples in the context of normal 
samples. DeepLens supports this by allowing users to compare ID 
text and OOD text side by side. Furthermore, compared with image 
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data, text documents are less glanceable. Therefore, DeepLens high-
lights the salient words in each text document to help developers 
quickly grasp the gist of each document. 

8.2 Target User Groups and Use Cases 
DeepLens is designed for users who know ML but are not familiar 
with OOD issues. In our user study, most participants have heard 
about OOD issues but have not worked on OOD issues before. 4 out 
of 24 participants even reported that they had never heard about 
OOD before. Our user study results suggest that these participants 
performed better when using DeepLens compared with using the 
baseline tool (mean number of OOD types found per participant: 
3.5 vs. 1.3, Welch’s �-test: � < 0.0001). Furthermore, they also 
felt more confdent with the OOD issues they identifed (median 
rating of confdence: 6 vs. 5). While experts may be more likely to 
identify OOD types by reading raw text data, they still appreciated 
DeepLens since it automates some of their work. For instance, 
the clustering in DeepLens automates the process of categorizing 
similar texts for them. P17 wrote, “by going through these clusters, I 
can fnd trends faster than by going through individual data points.” 

P5 commented, “DeepLens automated some of the manual work, and 
I found that my productivity is improved. I can get more work done 
within the same amount of time.” 

DeepLens is specifcally designed for debugging OOD issues 
for NLP models. Therefore, our fndings and design implications 
cannot be generalized to other kinds of ML issues, such as gradient 
vanishing. In addition, DeepLens can also be deployed as an online 
tool to continuously monitor potential data distribution shifts for 
deployed models. 

8.3 Limitations and Future Work 
In addition to the limitations and suggestions pointed out by our 
user study participants (Sec. 7.4), there are several other limitations 
to our user study design and system. 
User Study Baseline. In our current form of user study, a vari-
ant of DeepLens was created as the baseline method by disabling 
the cluster view and the highlighting view. However, this cannot 
distinguish the contribution of individual features to user perfor-
mance improvement. One can consider creating more variants of 
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DeepLens by disabling individual features as the comparison base-
lines. One can also consider instrumenting the tool and measuring 
the utility rate of each feature during user study sessions. 
Limited NLP Tasks. Our user study cannot confrm whether 
DeepLens works for all types of NLP tasks. To comprehensively 
evaluate the usefulness of DeepLens, one can consider using 
DeepLens to identify OOD issues in more diverse NLP tasks, e.g., 
question answering and natural language inference. 
Accuracy of OOD Detection. Currently, DeepLens leverages 
MSP [4] as the OOD detection algorithm. Though MSP has been 
proven efective in several NLP tasks [4], it may not always be 
applicable to other kinds of NLP tasks or models. Since the design 
of DeepLens is not limited to a specifc type of OOD detection 
algorithm, one future direction could be to integrate more OOD de-
tection algorithms to DeepLens and allow users to switch between 
diferent algorithms. 
Scalability Issue. Based on our user study results, DeepLens can 
handle 1,000-4,500 data points. However, once the data is scaled 
up (e.g., millions of data points), nodes in the cluster view may 
overlap with each other. To address this issue, one can leverage 
more advanced visualization techniques such as Bubble Treemaps 
[18] to visualize clustering results hierarchically. 
Alternative Algorithms and Design. Our cluster view can be 
further improved by using more advanced dimension reduction 
and clustering algorithms. In the current version of DeepLens, we 
choose PCA for dimension reduction and K-Means for text cluster-
ing since they are classical and common choices. However, more ad-
vanced dimension reduction methods, e.g., t-SNE [24], Isomap [56] 
could potentially lead to better dimension reduction results. Be-
sides, our text clustering can also be improved with methods that 
are specialized for topic modeling, e.g. ConceptScope [63] and Top-
icNets [16]. Finally, our highlighting view can potentially be im-
proved by replacing neuron activation analysis with other interac-
tive tools for selecting and visualizing salient words in text data, 
e.g., exBERT [25]. 

9 CONCLUSION 
In this paper, we present a novel interactive system, DeepLens, 
to help ML developers detect, explore, and understand potential 
OOD (out-of-distribution) issues in NLP models. DeepLens lever-
ages a text clustering algorithm to help users efciently identify 
and explore potential types of OOD in large-scale text data. Fur-
thermore, DeepLens integrates a neuron activation analysis-based 
algorithm to highlight salient words in an individual data instance 
to help users quickly understand a text without reading it in detail. 
We implemented DeepLens as a web application and conducted a 
within-subjects user study with 24 ML developers on four diferent 
NLP tasks. The results show that with the help of DeepLens, de-
velopers were able to have a better understanding of OOD issues 
in ML models and identify more types of OOD data confdently 
compared with using the baseline tool. In the end, we discuss the 
design implications from DeepLens and propose several promising 
future directions. 
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A TASKS FOR USER STUDY 

A.1 NLP Task 1: Topic Classifcation 
DBPedia dataset extracts structured content from the information 
created in the Wikipedia project. In this task, we use DBPedia-14, 
collected by picking 14 non-overlapping topics from Wikipedia in 
2014. We use examples from the frst 4 classes as ID data and the 
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rest as OOD data. To simulate real-world data with semantic shift, 
we sample 1000 instances from the test splits of 14 topics. 
In-distribution Data ID data contains 300 samples and 4 topics: 
Company, Educational Institution, Artist, and Athlete. 
Out-of-distribution Data OOD data contains 700 samples and 10 
topics: Ofce Holder, Mean of Transportation, Building, Natural 
Place, Village, Animal, Plant, Album, Film, and Written Work. 
Model We fne-tune the BERT model for 1 epoch on the training 
split of ID data with a learning rate of 5 × 10−5 and a batch size of 
16. It achieves 98.5% accuracy on the validation splits of ID data 
and 28% accuracy on the test data. 

A.2 NLP Task 2: Sentiment Analysis 
In this task, we use IMDB datasets as ID data and Yelp Polarity 
binary sentiment classifcation datasets as OOD data. The IMDB 
dataset contains movie reviews. The Yelp polarity dataset is formed 
by reviews for diferent businesses. Both IMDB and Yelp datasets 
have two labels Positive and Negative to predict the sentiment of 
the reviews. To create online data with background shift, we sample 
1000 instances from both IMDB and Yelp test splits. 
In-distribution Data 495 samples of movie reviews from IMDB 
dataset. 
Out-of-distribution Data 505 samples of business reviews from 
Yelp dataset. 
Model We fne-tune the BERT model for 1 epoch on the training 
split of ID data with a learning rate of 5 × 10−5 and a batch size of 
16. It achieves 93.5% accuracy on the validation splits of ID data 
and 89% accuracy on the test data. 

A.3 NLP Task 3: Emotion Recognition 
The six basic emotions included in the Emotion dataset are Sadness, 
Fear, Joy, Anger, Surprise, and Love. The source of the dataset 
is English Twitter Messages. There are 2 columns in the dataset, 

mapping to emotion index (0 to 5) and text. We use examples from 
the Sadness and Fear classes as ID data and the rest as OOD data. 
To create online data with semantic shift, we sample 1000 instances 
from 6 topics’ test splits. 
In-distribution Data ID data contains 644 samples and 2 emotions: 
Sadness and Fear. 
Out-of-distribution Data OOD data contains 356 samples and 4 
emotions: Joy, Anger, Surprise, and Love. 
Model We fne-tune the BERT model for 4 epochs on the training 
split of ID data with a learning rate of 2 × 10−5 and a batch size of 
32. It achieves 99.2% accuracy on the validation splits of ID data 
and 31% accuracy on the test data. 

A.4 NLP Task 4: Fake News Detection 
In this task, we design a background shift scenario that involves 
fakeness detection on diferent types of news. FakeNewsNet is a 
dataset collected from two fact-checking websites: GossipCop and 
PolitiFact. It contains news with labels indicating its validity an-
notated by professional journalists and experts. PolitiFact contains 
news related to U.S. politics and GossipCop is formed by entertain-
ment news and gossip news. Besides, we also use the COVID-19 
Fake News dataset in this task. It contains COVID-19-related news 
extracted from social media such as Facebook, Twitter, etc. We 
use PolitiFact data as ID data. Then we combine GossipCop and 
COVID-19 Fake News datasets as OOD data. To create online data 
with background shift, we sample 4500 instances from PolitiFact, 
GossipCop, and COVID-19 Fake News test splits. 
In-distribution Data 2000 samples of news related to U.S. politics. 
Out-of-distribution Data 2500 samples of news related to gossip 
and COVID-19. 
Model We fne-tune the BERT model for 3 epochs on the training 
split of ID data with a learning rate of 5 × 10−5 and a batch size of 
16. It achieves 89.5% accuracy on the validation splits of ID data 
and 67% accuracy on the test data. 
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Figure A1: Interface of DeepLens for task 1. 

Figure A2: Interface of DeepLens for task 2. 
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Figure A3: Interface of DeepLens for task 3. 

Figure A4: Interface of DeepLens for task 4. 
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