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Abstract
With the rapid recent development, deep learning based object detection techniques have been applied to various real-world
software systems, especially in safety-critical applications like autonomous driving. However, few studies are conducted to
systematically investigate the robustness of state-of-the-art object detection techniques against real-world image corruptions
and yet few benchmarks of object detection methods in terms of robustness are publicly available. To bridge this gap, we
initiate to create a public benchmark of COCO-C and BDD100K-C, composed of sixteen real-world corruptions according
to the real damages in camera sensors and image pipeline. Based on that, we further perform a systematic empirical study
and evaluation of twelve representative object detectors covering three different categories of architectures (i.e., two-stage,
one-stage, transformer architectures) to identify the current challenges and explore future opportunities. Our key findings
include (1) the proposed real-world corruptions pose a threat to object detectors, especially for the corruptions involving
colour changes, (2) a detector with a high mAP may still be vulnerable to real-world corruptions, (3) if there are potential
cross-scenarios applications, the one-stage detectors are recommended, (4) when object detection architectures suffer from
real-world corruptions, the effectiveness of existing robustness enhancement methods is limited, and (5) two-stage and one-
stage object detection architectures are more likely to miss detect objects compared with transformer-based methods against
the proposed corruptions. Our results highlight the need for designing robust object detection methods against real-world
corruption and the need for more effective robustness enhancement methods for existing object detectors.
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1 Introduction

Object detection refers to the technique that determines
whether there are any instances of objects from a pre-
defined set of categories in a given image and where they
are located (Liu et al., 2020). Compared to image classi-
fication, object detection additionally enables the user to
know the coordinates of objects precisely by localization.
The rapid development of deep learning techniques has
greatly improved the accuracy of object detection tech-
niques (Pouyanfar et al., 2019), enabling the option to solve
more complex real-world tasks with object detection. Nowa-
days, object detection has been widely deployed in diverse
commercial and industrial domains and system applications,
including robot vision (She et al., 2020), autonomous driv-
ing (Garcia et al., 2020), augmented reality (Liu et al., 2019b),
etc.
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Despite the rapid development of deep learning-based
object detection techniques, concerns are also raised about
their robustness and reliability since they might be used
in safety-critical applications like autonomous driving. A
small flaw in the object detector of autonomous driving sys-
tems could result in severe consequences. For instance, even
images with visually imperceptible perturbations, i.e., the
adversarial examples, may cause the failures of object detec-
tors (Xie et al., 2017). In the real-world scenario, a missed
detection of Tesla runs into a car crash (Times, 2017; CNN,
2016). While among the root causes that trigger the flaws
in object detectors, one of the major causes could be the
corrupted data (Hendrycks et al., 2019). However, there is a
lack of comprehensive studies on object detection robustness
against real-world corruptions. Most of the existing studies
have been using common corruptions to benchmark image
classification and semantic segmentation (Hendrycks et al.,
2019; Kamann and Rother, 2021). Michaelis et al. (2019)
conduct a benchmark to assess object detection’s perfor-
mance by combining common corruptions and real-world
weather corruptions, whereas these common corruption pat-
terns might either be unreal or seldom happens in real-world
environments. Given the fact that images used by object
detectors are usually directly captured from cameras with-
out any manual processing, damages of camera sensors or
image processing could bring several kinds of real-world
corruptions (Garcia et al., 2020). However, it is still unclear
to what extent the performance of existing object detectors
would be degraded against such real-world corruptions. As
object detectors become a key component inmany real-world
intelligent software systems, it is of great importance to sys-
tematically investigate their potential risks and limitations
during real-world usage.

To bridge this gap, in this paper, we initiate an early step
and present the first benchmark for object detection against
real-world corruptions, and perform a systematic analysis to
benchmark the performance of representative object detec-
tion methods and robustness enhancement techniques. The
real-world corruptions are designed according to the real
damages in image sensing pipeline of camera sensors for
object detection software systems, which ensure the perfor-
mance of higher-level algorithms (Schwartz et al., 2019).
Our high-level study workflow is summarized in Fig. 4. In
particular, we mainly investigate research questions from
five important perspectives, to identify the challenges and
potential opportunities for building safe and reliable software
systems based on object detection.

In summary, this papermakes the following contributions:

• We design the first series of real-world corruptions based
on the real damages that could occur in image pipeline
of camera sensors.

• We create the first publicly available benchmark of object
detection with different kinds of architectures that span
over various industrial domains, which initiates a very
early step and enables many potential follow-up research
along this direction.

• We perform a systematic analysis of the performance
(i.e., error rates and flaw symptoms) of the selected object
detectionmethods and robustness enhancementmethods.

• Based on the analysis results, we further pose discus-
sions on the challenge of future directions on building
robust object detection, including comprehensive evalu-
ation metrics, improving bounding box localization and
avoiding missed detection flaws when encountering real-
world corruptions.

To the best of our knowledge, this is the very first paper
that establishes a publicly available dataset and benchmark
for diverse categories (two-stage, one-stage, transformer
architectures) of object detection methods against real-world
corruptions.1 The benchmark and our study results demon-
strate the potential research opportunities around object
detection techniques to meet the growing demands for robust
object detection. Our work enables better understanding,
establishes the basis, and paves the path toward further
quality assurance research to build safer and more reliable
software systems.

2 Background and RelatedWork

2.1 Object Detection

Overview. Object detection has been employed for detect-
ing the existence of objects in a given image and returning
the spatial location and extent of each instance. As an impor-
tant task in the computer vision domain, object detection has
become a key component of many intelligent software sys-
tems and has been employed in many real-world application
scenarios (Pathak et al., 2018), making the systematic study
on which very important. For example, in a safety-critical
system, e.g., autonomous driving (Tian et al., 2018), the sys-
tem would require not only what classifications of objects
are present in the current field of view, but also, more impor-
tantly, where these objects are located (Feng et al., 2021)
to avoid collisions. The same requirements are also posted
in other real-world applications such as medical diagnosis
(Shen et al., 2017) and intensive crowd detection (Sindagi
and Patel, 2018).

Definition To be specific, object detection is aimed at locat-
ing object instances from a large number of predefined

1 https://sites.google.com/view/real-worldbenchmark.
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categories in images (Liu et al., 2020). The detection is
mainly conducted by a detector D, which is defined as fol-
lows:

Definition 1 (Detector) In a given scenario, an object detec-
torD is expected to determine whether there are instances of
objects O0, . . . , On in the detected image I from predefined
categories C0, . . . ,Cm , and, if present, to return a bounding
box B of each instance. A bounding box B is defined by its
spatial location (x, y) with its width w and height h.

D(I ) = {O0[Ci , B(x, y, w, h)], . . . } (1)

where 0 ≤ i ≤ m, and (x, y) may denote the center or the
upper-left corner of the bounding box.

Since the task of object detection involves the two sub-
tasks of object localization and classification, the approaches
based on deep learning for object detection mostly fall into
three main categories:

• Two-stage detection, also called region-based detection,
employs a pre-processing stage for generating object pro-
posals, including (Szegedy et al., 2013; Sermanet et al.,
2014; Erhan et al., 2014a, b).

• One-stage detection, or region proposal free detection,
has a single proposed method which does not separate
the process of the detection proposal, including (Redmon
et al.., 2016; Liu et al., 2016; Bolya et al., 2019; Duan et
al., 2019).

• Transformer detection treats the object detection as a
prediction problem for a collection, using the encoder-
decoder structure, including (Carion et al., 2020; Zhu et
al., 2021).

Methodologies. In the early ages, the study of object detec-
tion is based on template matching techniques and simple
part-based models. Fischler and Elschlager (1973) propose
a method to find a visual object with descriptions. Since
then, handcrafted local invariant features begin to be pop-
ular, such as the Scale Invariant Feature Transform (SIFT)
proposed by Lowe et al. (1999). Since 2014, researchers
have started to adopt deep learning techniques for object
detection. Girshick et al. propose the two-stage detector,
RCNN, which obtains record-breaking results in the detec-
tion of general object categories (Erhan et al., 2014b). To
reduce the computational cost for current mobile/wearable
devices, Liu et al. (2016) propose the one-stage detector,
SSD. In addition to using CNNs, recent work has also lever-
aged transformer-based architecture to solve object detection
problems, including DETR, a transformer detector proposed
by Carion et al. (2020). Many of these object detection

methods have also been involved in solving complex real-
istic problems in real-world scenarios (Litjens et al., 2017),
e.g., autonomous driving, intelligent video surveillance, and
augmented reality. Wu et al. propose Squeezedet, a fully
convolutional neural network for autonomous driving with
real-time inference speed, small model and energy efficiency
(Wu et al., 2017). Liu et al. (2022) employ Faster R-CNN for
object detection in medical images via the additive secret
sharing technique and edge computing.

2.2 Object Detection Robustness

Overview. The robustness of object detection indicates the
degree to which a detector can perform correctly in the pres-
ence of invalid inputs or stressful environmental scenarios
(Shekar et al., 2021). Several recent efforts demonstrate that
the object detectors are suffering from the threat of non-
robustness (Islam et al., 2019; Sun et al., 2015). In real-world
applications, the object detectors must be robust enough to
cope with various challenges and uncertainties. For example,
in the autonomous driving scenario, an ideal object detector is
required tomaintain its reliability under variousweather con-
ditions, different road conditions, and may even be required
to face hardware damages. Therefore, a lot of work has been
devoted to the study of object detection robustness.
Datasets. Currently, several datasets have been made pub-
licly available for evaluating robustness. Dan et al. propose
a dataset named ImageNet-C with 15 common corruptions
from noise, blur, weather, and digital categories to mea-
sure corruption robustness and ImageNet-Pwith perturbation
sequences to measure perturbation robustness (Hendrycks
et al., 2019). Michaelis et al. use 15 common corruptions
of ImageNet-C and generate new datasets, i.e., PASCAL-C
and Cityscapes-C for robustness evaluation (Michaelis et al.,
2019). These public datasets are constructed with common
corruptions. However, to evaluate the robustness of object
detectors in real-world scenarios, except for common cor-
ruptions, the robustness datasets need to include additional
corruptions corresponding to real-world situations.
Methodologies. Many methodologies have been proposed
to generate augmented data and adversarial samples for
the study of object detection robustness. The test-time data
augmentation on accuracy is a well-known mechanism for
measuring the robustness (Shorten and Khoshgoftaar, 2019).
Minh et al. (2018) measure robustness by distorting test
images with a 50% probability and contrasting the accuracy
on un-augmented datawith the augmented data. Carlson et al.
propose an efficient, automatic, physically-based augmenta-
tion pipeline and improve the robustness of object detection
in urban driving scenes. Zhong et al. (2020) obtain reason-
able improvement on the robustness object detectionwith the
data augmentation method. Rebuffi et al. (2021) combine the
model weight averaging with data augmentation to improve
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robustness. Meanwhile, many studies exist on investigating
adversarial robustness. Sobh et al. (2021) apply both white
and black box adversarial attacks on object detectors to evalu-
ate robustness. Zhang et al. (2022) propose a model-agnostic
adversarial defensive method and improve the robustness
of object detectors. Kim et al. (2021) propose an opti-
cal adversarial attack to evaluate the robustness of object
detectors. Both data augmentation and adversarial attack
methodologies show promising achievements in evaluating
and improving robustness. However, these methodologies
may also have the potential to produce data that does not
match real-world scenarios.
Benchmarks. Up to now, several public benchmarks on
object detection and robustness have been proposed. These
benchmarks show the performance of object detectors
regarding accuracy and robustness. Chen et al. (2019b)
propose an object detection toolbox named MMDetection,
which contains a rich set of object detectors with related
components and modules, as well as the accuracy of the
detectors. Michaelis et al. (2019) provide an easy-to-use
benchmark to assess the robustness of object detectors.
The Robust Vision Challenge2 is proposed to measure the
performance of object detectors across several challenging
benchmarks with different characteristics, e.g., indoors ver-
sus outdoors, real versus synthetic, sunny versus badweather,
and different sensors. Kamann and Rother (2021) present a
robustness benchmark with DeepLabv3+ implemented on
various network backbones. Dong et al. (2020) propose a
comprehensive and coherent benchmark to evaluate adver-
sarial robustness. These benchmarks provide considerable
insights for the research of object detection and robustness.
Nowadays, object detectors have been increasingly adopted
in real-world applications. More benchmarks concerning
object detection robustness in real-world scenarios are nec-
essary for further research in multiple domains.

Figure1 shows the landscape of the above-mentioned
interrelated aspects. Up to now, lots of studies have been
proposed regarding object detection and robustness. Differ-
ent from existing studies regarding common corruptions,
adversarial attacks and augmentations, we focus on the
robustness of object detection against real-world corruptions.
To this end, we aim to propose new datasets with corruptions
corresponding to real-world situations, and present a new
benchmark reflecting the object detection robustness in real-
world scenarios.

2.3 Image Sensing Pipeline of Cameras

In applications like autonomous driving (Garcia et al., 2020)
and video surveillance (Elharrouss et al., 2021), object detec-
tion usually requires real-time processing. Therefore, the

2 http://www.robustvision.net/.

Fig. 1 The landscape of interrelated aspects and our motivation

images collected by the sensors, i.e., cameras, will be sent
to object detectors directly without manual quality enhance-
ment. However, these images could be damaged in different
stages of the camera’s (image signal processor (ISP), result-
ing in incorrect detection results, and even crashes. ISP
is an important hardware in cameras dedicated to image
processing tasks, ensuring the performance of higher-level
algorithms (Schwartz et al., 2019). A typical ISP of a cam-
era in a real-world autonomous driving scenario is shown in
Fig. 2. In such a scenario, the camera receives reflected light
from the real world and eventually converts the light signal
into the electrical signal (Kawamura, 1998). The images from
the electrical signal are then used by the autonomous driving
system for object detection.

Within the internal components of the camera, the lens
group is used to receive the reflected light from the real world
and pass the light onto the sensor chip (Fossum, 1997). The
sensor chip makes use of the Bayer pattern to convert the
light signal into raw data of the digital signal, i.e., the RAW
image (Liu et al., 2019a). Since the Bayer pattern places sin-
gle colour filters on each pixel at intervals, the RAW image
yields a partially voided image in R, G, and B channels, as
shown in Fig. 3. To convert a RAW image into a JPG image
that can be directly used for the inference of downstream
tasks, the image signal processor (ISP) (Zhou et al., 2007)
then transforms the image automatically. Figure 3 shows
a simplified pipeline of digital image processing functions
within the ISP, consisting of mandatory basic functions and
optional enhancement functions.

Black level correction (BLC) counteracts hidden electric
current disturbances by providing gains in the R and G chan-
nels for RAW data. Lens shading correction (LSC) is applied
with colour casts to correct the shading caused by convex
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Fig. 2 Image pipeline in a real-world scenario

lens lenses. Automated white balance (AWB) applies differ-
ent gains to RGB components and compensate for colour
differences in terms of the illuminant. Bad pixel correction
(BPC) is responsible for the removal of dead points in the
conversion of the light signal. Colour filter array interpola-
tion (CFA-I) interpolates the twomissing colour components
at each pixel and produces the JPG image. Gamma correc-
tion (GC) corrects the linear relationship between current and
luminance to a non-linear relationship that is consistent with
human perception. Colour space conversion (CSC) converts
images from RGB colour space to YUV one to reduce image
noises.

The components on the Board-level Modules cooperate
to input the images into the Autonomous Driving System.
Master Control Unit provides the power and driving clock
for the image sensor chip. Image Cache converts the data into
a streaming format. Wire Harness transfers the streaming to
the Autonomous Driving System. Each component is closely
integrated, and a noise pattern in any one of them could lead
to flaws that threaten the Autonomous Driving System.

3 Study Design

3.1 Overview

As illustrated in Fig. 4, we perform our study to investigate
five research questions. InRQ1,we evaluate the effectiveness
of real-world image corruptions proposed in this paper. In
RQ2, we evaluate the performance of popular object detec-
tors against the proposed corruption patterns. In RQ4, we
investigate the robustness of object detectors by a cross-
scenarios evaluation. InRQ4,we evaluate the effectiveness of
enhancementmethods for object detection. InRQ5,we inves-
tigate the flaw symptoms found in different object detection
methods throughout our evaluation. In this section, we first
introduce the design of our real-world corruption patterns in
Sect. 3.2, and benchmark design in Sect. 3.3. Then we detail
the design of our research questions in Sect. 3.5. In this study,

Fig. 3 Image pipeline functions in a typical image signal processor

we would construct an object detection benchmark to enable
systematic studies and further research along this direction
to enhance the object detection component in an intelligent
software system.

3.2 Real-World Corruptions

As discussed in Sect. 2, object detection has been used
in many safety-critical domains, e.g. autonomous vehicle
systems, and noise patterns produced in any stage of cam-
era’s image pipeline could result in flaws of the object
detection for autonomous driving. Extensive studies have
shown the common corruption patterns could significantly
degrade the performance of image classifiers (Hendrycks et
al., 2019), however, there has not been any systematic study
on the effects of real-world corruptions that: (1) follow image
pipeline of the camera, (2) occur within the process of cam-
era’s internal processing. To bridge this gap, in this paper we
propose 16 real-world image corruption patterns based on
the potential damages that occur in different stages of cam-
era’s image pipeline. We group these 16 corruption patterns
into three categories according to different locations of dam-
ages: (1) camera damage, (2) ISPdamage, and (3) board-level
damage.
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Fig. 4 Study workflow and research questions

3.2.1 Camera Damage Corruptions

Among the camera components, the common real-world cor-
ruptions on Lens Group are Fog, Lens Obstruction, Focus
Motor Damage and on Sensor Chips are CCD Sensor Dam-
age, CMOS Sensor Damage.

Fog (F). The corruption F leads to scattering of the
reflected light received by the camera. According to the
atmospheric scattering formulation, the center of fogging,
the scattering coefficient, the transmittance and the atmo-
spheric light intensity can be obtained to reproduce this
corruption. The atmospheric scattering formulation is formu-
lated according to the existing method(Bruneton and Neyret,
2008).

Lens Obstruction (LO). The corruption LO obscures
the reflected light. We formulate this corruption by adding
obscuring drops and flipping the reflected light in the
obscured area. The formulation of corruption LO is repro-
duced with DirtyGAN (Uricar et al., 2021).

Focus Motor Damage (FM-D). The corruption FM-D
makes the reflected light out of focus. We formulate this
corruption by adding unfocused noise. The unfocused noise
of FM-D is generated with motion blur model (Lin et al.,
2012).

CCD Sensor Damage (CCD-D). The corruption CCD-D
causes white dot and line damage when the camera converts
the light signal into a digital signal. We formulate this cor-
ruption by adding white dots and line damage to the digital
signal, which is reproduced by the generic model in Antilo-
gus et al. (2014).

CMOS Sensor Damage (CMOS-D). The corruption
CCD-D causes white dot and black line damage on the digi-
tal signal. We formulate this corruption by adding black line
damage to the digital signal, which is reproduced according
to the laser spot model (Ying et al., 2009).

3.2.2 ISP Damage Corruptions

As the complicated component in the camera, the ISP could
be involved with diversified real-world corruptions in the
pipeline functions.

InsufficientBlackLevelCorrection (I-BLC)andExces-
sive Black Level Correction (E-BLC). The corruption
I-BLC and E-BLC lead to improper gains on images byBLC.
We formulate the insufficient corruption by adding insuffi-
cient gains on channel G and the excessive corruption by
adding excessive gains on channelG. These insufficient gains
are reproduced according to the algorithms in Zhou et al.
(2007).

Lens Shading Correction Damage (LSC-D). The cor-
ruptionLSC-Dcauses loss of brightness in the image corners.
We formulate this corruption with gradual decay of bright-
ness from the center of the image to the corners. The decay is
reproduced according to the algorithms in Silva et al. (2016).

AutomatedWhite Balance Damage (AWB-D). The cor-
ruption AWB-D leads to the failure to compensate for
illuminant differences in images. We formulate this corrup-
tion by applying different gains to RGB channels. The gains
are reproduced according to the algorithms in Zhou et al.
(2007).

Bad Pixel Correction Damage (BPC-D).The corruption
BPC-Dcauses someof the pixels to be bad dotswith incorrect
information. We formulate this corruption by adding black
pixels as bad pixels. The black pixels are reproduced accord-
ing to the algorithms in Celestre et al. (2016).

Colour Filter Array Interpolation Damage (CFAI-
D). The corruption CFAI-D leads to a partial loss of channel
information when converting Bayer RG images to RAW
images. We formulate this corruption by dropping channel
information partially on Bayer RG images. The dropping is
reproduced according to the algorithms in Zhou et al. (2007).

Gamma Correction Damage (GC-D). The corruption
GC-D causes abnormal brightness distribution of the image.
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We formulate this corruption bymodifying the contrast of the
brightness. The contrast modification is reproduced accord-
ing to the adaptive gamma correction method in Rahman et
al. (2016).

Colour Space Conversion Damage (CSC-D). The cor-
ruption CSC-D leads to the failure of colour noise removal
and edge enhancement on the YUV colour space. We formu-
late this corruption by adding colour noise and blurring the
edge on the YUV colour space, which is reproduced accord-
ing to the YUV model in Chaves-González et al. (2010).

3.2.3 Board-level Damage Corruptions

The corruptions belonging to this category indicate real-
world damages that occur on the components of the board-
level module.

Synchronization Exceptions (SE). The corruption SE
causes the image data with exceptions in the time sequence
when it is imported into the system. We formulate this cor-
ruption by dropping image data in the time sequence. The
dropping in the time sequence is reproduced chaotic syn-
chronization phenomena in Volos et al. (2013).

Memory Exceptions (ME). The corruption ME leads to
missing data in the memory. We formulate this corruption
by dropping data in the memory. The dropping in memory is
reproduced according to the image encoding steps in Guo et
al. (2016).

Transfer Harness Exceptions (THE). The corruption
THE causes damage to some of the channels when the image
data is transferred in YUV format. We formulate this cor-
ruption by dropping the information in some of the channels
of YUV format, which is reproduced according to the image
wireless transfer model in Chandra et al. (2016).

3.3 Benchmark Datasets

To benchmark the performance of popular object detection
methods against these corruption patterns,wemake use of the
COCO dataset and the BDD100K dataset. COCO is a large-
scale object detection dataset withmore than 200,000 images
and 80 object categories (Lin et al., 2014). Data from COCO
are common objects in society and natural context, render-
ing a perfectly clean dataset. The images in BDD100K are
the frames at the 10th second in the videos in a diverse driv-
ing dataset for heterogeneous multitask learning. To this end,
we construct COCO-C and BDD100K-C based on our pro-
posed corruption patterns. It is worth noting that our devised
corruptions are general to be applied to other datasets, e.g.,
KITTI.

Setup. We create COCO-C and BDD100K-C with five
severity levels for each corruption, which is the same as
ImageNet-C. Figure5 illustrates samples fromCOCO-Cwith
severity level 5, and they clearly still preserve the semantics

Fig. 5 Visualizations of COCO-C with severity level 5

of the objects. These designed corruptions are applied to the
validation set of COCO and BDD100K, resulting in COCO-
C and BDD100K-C— two 80 times larger datasets to test the
robustness of object detection methods.

Metrics. The commonly usedmetric for evaluating object
detectors are mean Average Precision (mAP) and Intersec-
tion over Union (IoU). mAP demonstrates how accurate a
detector is on detecting objects. IoU is the geometric overlap
ratio between two bounding boxes, to measure how accurate
a detector is on locating accuracy objects. In this work, how-
ever, we are more concerned with how badly they are wrong
than how well they are correct , i.e., to what extent a detector
makes errors on locating objects. Therefore, we propose new
metrics: Corruption Error (CE) and mean Corruption Error
(mCE) to evaluate the robustness of a given object detection
method.

As shown in Fig. 7, for a given object detector d, suppose
the ground-truth bounding box of an object O0 is defined
by a pair of coordinates ((x2, y2), (x3, y3)), and the pre-
dicted bounding box is defined by ((x1, y1), (x4, y4)), then
we denote the error rate on this object as

errd
O0

= 1 − |x4 − x3| ∗ |y3 − y4|
|x2 − x1| ∗ |y2 − y1| (2)

Thus, CE is calculated by the ratio of the non-overlap
region between the ground-truth bounding box and the pre-
dicted bounding box. With CE, we could provide a more
intuitive characterization on the flaws of the object detectors
over their robustness. Further, for a image I with n different

objects, we denote its error rate errd
I as

∑n−1
i=0 (errd

Oi
)

n . For a
clean dataset, i.e., the one without applying any corruption
patterns, we denote the average error rate on this dataset as
Ed

clean .
Real-world corruptions such as CMOS-D can be benign

or destructive depending on their severity. Figure 6 shows an
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Fig. 6 Predicted bounding boxes from SSD (Liu et al., 2016) on an image corrupted by different severity levels of CMOS-D. The higher the severity
levels, the greater the threats of corruptions to robustness

example on the change of predicted bounding box of SSD
against CMOS-D corruption on different severity levels. In
order to comprehensively evaluate a detector’s robustness
against a given certain type of corruption, we aggregate the
detector’s error rate across five corruption severity levels and
propose Corruption Error (CE) as the following.

C Ed
c =

∑5
s=1(Ed

i,c)

5
(3)

where c denotes a certain corruption pattern, and s denotes
the severity level.

In addition to CE, mean Corruption Error (mCE) is
proposed to evaluate a detector’s robustness against all cor-
ruptions.

mC Ed =
∑

c C Ed
c

|C | (4)

where C is a set of real-world corruption patterns, and |C |
denotes the size of C , which is 16 in this paper.

We use CE and mCE as the main metrics for benchmark-
ing. We will release our leaderboard publicly to facilitate
future studies on performance of object detectors.

3.4 Object Detectors

To construct a comprehensive and systematic benchmark,
in this study we select twelve representative object detection
methods (as shown in Table 1) according to: (1) performance
on original COCO and BDD100K dataset, and (2) diverse
model architecture. Each of them marks a milestone con-
tribution to the development of deep learning-based object
detection methods.
Two-stage detectors. The two-stage detectors generate
category-independent region proposals for objects in a given
image, and extract features from these regions to determine
the category labels of the objects. Among the two-stage
detectors, we select Faster R-CNN (Ren et al., 2015), Mask
R-CNN (He et al., 2017), RetinaNet (Lin et al., 2017), Cas-

Fig. 7 The detected (red) and expected (yellow) bounding box of the
object

cade R-CNN (Cai and Vasconcelos, 2019), Cascade Mask
R-CNN (Cai and Vasconcelos, 2019), and Hybrid Task
Cascade (Chen et al., 2019a). Faster RCNN first employs
an accurate region proposal network for generating region
proposals efficiently. Mask R-CNN adds a fully convolu-
tional network to get a binary mask for each region in
parallel to predicting the object label. RetinaNet reshapes
the standard cross entropy loss to address the problem of
foreground-background class imbalance. Cascade R-CNN
adopts end-to-end learning of more than two cascaded clas-
sifiers for generic object detection. Cascade Mask R-CNN
trains detectors sequentially to avoid overfitting, using the
output of the former as training set for the next. Hybrid Task
Cascade learns discriminative features progressively while
integrating complementary features in each cascade.
One-stage detectors. To reduce computational costs, the
one-stage detectors encapsulate all computation in a sin-
gle network by directly predicting class probabilities and
bounding box offsets from full images, without region pro-
posal generation. Among the one-stage detectors, we select
YOLO v3 (Redmon and Farhadi, 2018), SSD (Liu et al.,
2016), YOLACT (Bolya et al., 2019), and CenterNet (Duan
et al., 2019). YOLO v3 predicts an objectness score for each
bounding box using logistic regression and achieves obvi-
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Table 1 Selected object
detectors in the benchmark

Category Year Method Detector

Two-stage 2015 Faster R-CNN (Ren et al., 2015) FRC

2017 Mask R-CNN (He et al., 2017) MRC

2017 RetinaNet (Lin et al., 2017) RN

2018 Cascade R-CNN (Cai and Vasconcelos, 2019) CRC

2019 Cascade Mask R-CNN (Cai and Vasconcelos, 2019) CMRC

2019 Hybrid Task Cascade (Chen et al., 2019a) HTC

One-stage 2016 SSD (Liu et al., 2016) SSD

2018 YOLO v3 (Redmon and Farhadi, 2018) YL3

2019 YOLACT (Bolya et al., 2019) YLA

2019 CenterNet (Duan et al., 2019) CN

Transformer 2020 DETR (Carion et al., 2020) DETR

2021 Deformable DETR (Zhu et al., 2021) DDETR

ous improvements in efficiency. SSD performs detection over
multiple scales by operating on multiple feature maps to pre-
serve real-time speed without sacrificing too much detection
accuracy. YOLACT further improves the efficiency by gen-
erating a set of prototype masks and predicting per-instance
mask coefficients. CenterNet models an object as a single
point to avoid the exhaustive list of potential object locations.
Transformer-based detectors. The recent progress has
shown that transformer-based architecture, which is origi-
nally proposed for NLP tasks and also shown to be effective
for CV applications. Different from the above local-to-
global detection methods, transformers are global-to-local
detection methods. We select DETR (Carion et al., 2020)
and Deformable DETR (Zhu et al., 2021) as representa-
tive transformer-based detectors. DETR implements object
detection as a direct set prediction problem via bipartite
matching, leveraging a transformer encoder-decoder archi-
tecture. Deformable DETR employs attention modules to
avoid slow convergence and limited feature spatial resolu-
tion.

3.5 Research Questions

RQ1: How do our corruptions perform in finding flaws?
RQ1 aims to study the effectiveness of the proposed 16

corruptions in two dimensions. On the one hand, these cor-
ruptions should effectively expose the vulnerabilities of the
object detection models. To this end, we leverage twelve rep-
resentative object detection methods introduced in Sect. 3.4.
For a fair benchmark, we re-train each object detection
method on the clean dataset, i.e., the original training data of
COCO and BDD100K, and adopt the same training strategy
as described in each method’s paper and documentation. We
first report theCEof each object detector on the clean dataset.
Then, we calculate the CE of each detector on different
corruption and categorized the results into three categories

according to the location of damaged camera components
(i.e., camera damage, ISP damage and board-level damage).
By analyzing the evaluation results, we’d like to evaluate
whether our proposed corruption patterns can find flaws and
limitations of popular object detection methods.

On the other hand, the data generated by these corrup-
tions should be sufficiently realistic. We employ structural
similarity (SSIM) (Wang et al., 2004), information fidelity
criterion (VIF) (Sheikh and Bovik, 2006) and visual infor-
mation fidelity (IFC) (Sheikh et al., 2005) to measure the
realism of the generated data. SSIM is a benchmark criterion
for evaluating the structural information of generated data.
VIF measures the information fidelity of generated data. IFC
measures the visual quality of generated data. The higher the
evaluation results are, the better the realism of the corruption
is.
RQ2: How do current object detectors perform against
real-world corruptions?

For RQ2, we focus on assessing the existing object
detector’s robustness by interpreting their average mCE on
COCO-C and BDD100K-C w.r.t. different model architec-
tures. We first divide the twelve object detection methods
into three categories according to their model architectures:
(1) two-stage architectures, (2) one-stage architectures, and
(3) transformer-based architectures. In the experiment, we
calculate mCE of each architecture and observe their perfor-
mance by category. By observing these results, we’d like to
learn more about the characters of model architectures when
designing a robust object detector against real-world image
corruptions.
RQ3: How do the scenarios of datasets affect detectors?
In different application scenarios, the data used by object
detection models can vary. In a universal scenario, there are
various objects to be detected with a low level of density, e.g.
in shopping software to identify the category of goods. In the
autonomous driving scenario, there is limited variety but high
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density of objects to be detected, e.g. detecting obstacles on
the road.What are the consequenceswhen anobject detection
model uses data that does not fit the use scenario? Are the
consequences consistent across different models? In RQ3,
we will investigate these questions.

Currently, object detection models are widely used in
universal scenarios, but also play an important role in the
autonomous driving scenarios. Therefore, to answer RQ3,
we train all models with data from universal (i.e., COCO)
and autonomous driving scenarios (i.e., BDD100K), respec-
tively. To investigate the consequences of data not matching
the scenarios, we evaluate the mCE of autonomous driving
models with data from the universal scenario (i.e., COCO-C)
and the universal models with data from autonomous driving
scenario (i.e., BDD100K-C).
RQ4: How do current robustness enhancement methods
perform against real-world corruptions?

For RQ4, we focus on investigating the effectiveness of
existing robustness enhancement methods which have been
proved to be effective in improving performance on many
computer vision tasks (Hendrycks et al., 2019). However,
it is still unclear whether these methods would be effective
for enhancing the detector’s robustness against real-world
corruption patterns. In the experiment, we make use of
four representative enhancement strategies. Specifically, we
leverage Contrast Limited Adaptive Histogram Equalization
(CLAHE) (Pizer et al., 1987), Style Transfer (ST) (Geirhos
et al., 2019), Non-Local Means (NLM) (Buades et al., 2005)
and Adversarial Training (AT) (Tramèr et al., 2018) as
enhancement strategies. CLAHE increases the contrast of an
image by local histogram equalization, making the objects
easier to be detected and reduce the effect of some corrup-
tion patterns. ST extends the sample space of object detectors
and increases the diversity of the image by transferring the
image across different styles. With ST, the generalization of
detectors could be improved and leading to high robustness.

NLM improves the images in terms of quality and clarity
by reducing the noises, which helps the detectors to identify
the objects. AT improves the robustness of object detectors
to noise, perturbation and adversarial attacks, by minimiz-
ing the worst-case error when the data is perturbed by an
adversary. We adopt the original hyper-parameter settings
which are consistent with their official implementations in
our study. We calculate CE for each of the different detectors
after deploying one of three techniques. By comparing the
detector’s performance before/after enhancement, we’d like
to answer whether these enhancement techniques are still
effective against real-world corruptions.
RQ5: How many flaw symptoms occur in current object
detectors?

There are multiple flaw symptoms in object detectors,
such as build errors, launch errors, and logic errors (Gar-
cia et al., 2020). Since the architectures adopted in this paper

are consistent with their official implementations, we avoid
flaw symptoms like build errors. Therefore, in RQ5, we aim
to investigate the flaw symptoms independent of external
factors. To better understand the flaws revealed in RQ2 -
RQ4, we perform exploration on five typical flaw symptoms
divided by flaws on different output’s component of object
detectors (defined in Definition 1) as follows:

• Correct bounding box with wrong objects (CBWO): The
detector locates the object in the correct bounding box,3

but classifies the object into a wrong category.
• Wrong bounding box with correct objects (WBCO): The
detector locates the object in the wrong bounding box but
classifies the object into a correct category.

• Wrong bounding boxwith wrong objects (WBWO): The
detector locates the object in thewrong bounding box and
classifies the object into a wrong category.

• Partial missed detection (PMD): The detector fails to
detect some of the objects in an image.

• Missed detection (MD): The detector fails to detect all
of the objects in an image.

4 Experiment

4.1 Experimental Settings

All the experiments were run on multiple high-performance
servers, each of which is equipped with Intel(R) Xeon(R)
Gold 6248 CPU, NVIDIA GV100GL GPU, and 106GB
RAM. All deep learning models and proposed corruptions
are implemented with Python 3.7, Anaconda 4.5.11, CUDA
10.1 and PyTorch 1.6.0.We spent 1680h training the selected
object detectors and 1800h on generating COCO-C and fur-
ther evaluation, respectively.

4.2 RQ1: Potential risks posted by real-world
corruptions

Table 2 shows the experimental results of RQ1, where we
evaluate the CE of the selected twelve object detectors’
on COCO-C. To ensure a fair comparison, we re-train all
these object detectors on the original training data of COCO
and summarized their performance on the clean test set of
COCO in Table 3. As we can see from Table 3, the mean
Average Precision (mAP) of each object detectors are con-
sistent with their reported value in original publications,
showing that our re-implementation and re-training do not
affect the performance of these object detector. The goal of
COCO-C is to evaluate the general performance of object

3 According to Liu et al. (2020) the bounding box is considered correct
only if the error rate errd

O0
< 0.5.
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Table 3 mAP of detectors implemented by official and our benchmark

Detectors Official Benchmark

Two-stage

FRC 21.2 41.6

MRC 39.8 42.7

RN 40.8 40.8

CRC 42.8 42.5

CMRC 45.8 45.6

HTC 47.1 47.0

One-stage

SD 33.0 33.7

YL3 28.8 29.5

YLA 28.2 30.5

CN 30.0 29.5

Transformer

DETR 42.0 40.1

DDETR 46.2 46.8

A higher mAP means better performance

detectors in various real-world scenarios. COCO-C is not
designed for training-time optimizations but augmentations
with other/similar corruptions are allowed and should be
explicitly stated.

According to the results in Table 2, we can find the differ-
ence between object detectors on clean data and corrupted
data are significant (t-test = 3.02, p < 0.0001), where there
is an average 10% increase on CE across different object
detectors and corruption patterns.

Despite the impressive results on clean inputs (i.e.,
COCO), the current object detectors cannot deliver good
performance on real-world corrupted inputs (i.e., COCO-C).
From Table 2, among all corruptions, a minimum of 49.8%
C E is derived (increased by 1.2% compared to C Eclean).
Hence our proposed real-world corruptions could fulfill the
goal as a performance benchmark for future studies on
improving object detector’s robustness. Besides, we also
find C EC M O S−D , C E B PC−D , C EC SC−D , and C ET H E are
abnormally high for all architectures, with values higher than
70%. Further investigation shows that these corruption pat-
terns usually have significant impacts on the colour of the
images, not on the illumination as LO, LSC-D and GC-D do.

We summarize the findings from RQ1 as the followings:

• Finding 1.1. All of the proposed real-world corrup-
tions pose a threat to object detectors. The selected
object detectors have poor performance regardless of the
corruption categories, suggesting a general vulnerability
of detectors. Meanwhile, the SSIM results for corrup-
tions are almost> 0.8, indicating that the structure in the
original data is not lost in the generated data. In addition,

Fig. 8 mCEof different object detectors (orange, blue, and green circles
represent two-stage, one-stage, and transformer-based architectures,
respectively). Detectors with high mAP and low mCE are preferred

the results of IFC and VIF are > 0, which indicates that
our corruptions generate realistic data and do not cause
severe distortion.

• Finding 1.2. The object detectors aremore sensitive to
colour changes.Wefind that the selected object detectors
are extremely sensitive to CMOS-D, BPC-D, CSC-D,
and THE, suggesting that when designing a robust object
detector against real-world corruptions, colour-change
issues should be carefully addressed.

4.3 RQ2: Robustness of different object detectors

Figure 8 shows the robustness performance of the selected
object detectors in this study in terms of the relationship
between mAP and mCE. As we can observe from the fitted
dashed line Fig. 8, the increase of mAPmay be accompanied
by the decrease of mCE, especially for object detectors with
one-stage architectures. However, when it comes to archi-
tectures of two-stage and transformers, the correlation is not
applicable. This finding produces an insight that a detector
with a high mAP may happen to be vulnerable. Besides, we
can also interpret that one-stage methods are more vulnera-
ble to real-world corruptions,which showsmuchhighermCE
compared with two-stage and transformer-based methods.

From the perspective of the object detection architecture,
we obtain several interesting findings and summarize as fol-
lows:

• Finding 2.1. The relationship betweenmAP andmCE
of the object detectors does not always follow a nega-
tive correlation.Widely-used metric mAP might not be
a good indicator for evaluating object detector’s robust-
ness against real-world corruption patterns, especially for
the two-stage and transformer-based methods, which has
shown good performance on clean dataset in terms of
mAP.
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Table 4 Changes on mCE of different object detectors under different scenarios

Detectors (%) Universal detector Autonomous driving detector

Universal robustness Autonomous driving robustness Universal robustness Autonomous driving robustness

Two-stage

FRC 11.3 6.2 12.8 7.7

MRC 10.9 6.3 9.2 7.5

RN 12.3 6.7 9.6 8.9

CRC 11.5 6.3 8.7 9.3

CMRC 11.6 6.5 8.6 9.1

HTC 11.2 6.2 14.9 6.9

One-stage

SSD 10.2 1.3 7.5 5.6

YL3 8.0 3.7 8.1 6.6

YLA 8.7 4.0 7.2 7.0

CN 8.8 6.4 10.6 6.6

Transformer

DETR 11.3 6.6 10.1 9.5

DDETR 12.9 7.3 – –

The Lower the changes on mCE, the higher the stability on cross-scenario applications

• Finding 2.2. The cascade architecture and the
deformable attention module may not be necessary
for robustness. According to Fig. 8, the detectors with
cascade architecture and deformable attention module
perform better on mAP, while failing to bring effective
improvement on mCE, e.g., DDETR to DETR, CRC to
FRC, CMRC to MRC. This implies that the ability of
the cascade architecture and the deformable attention
module is limited in terms of robustness. The object
detectors with these components might be more desir-
able in scenarios with controlled conditions, where there
would be more specialized maintenance regulations for
the image pipeline of the object detectors. For example, in
medical image analysis, the medical image pipelines are
carefully controlled and protected from real-world cor-
ruptions. However, in more general usage scenarios, e.g.,
autonomous driving, object detectors and their image
pipelines are exposed to lots of real-world corruptions,
and pose higher requirements for robustness.

• Finding 2.3. The one-stage detectors are more prone
to flaws, compared with other damages. One-stage
detectors obtain higher CE and mCE compared with
the two-stage and transformer-based detectors. Although
they are proposed to reduce computational costs, they
sacrifice effectiveness to efficiency. This finding may
inspire developers to pay more attention to the flaws in
one-stage detectors, since efficiency is not the only thing
important for object detection.

4.4 RQ3: Robustness under Different Scenarios

In this RQ, we employ a cross-scenario evaluation to inves-
tigate the robustness of object detectors. In specific, we
evaluate the mCE of both universal detectors (i.e., object
detectors trained on COCO) and autonomous driving detec-
tors (i.e., object detectors trained on BDD100K) over data
from multiple scenarios (i.e., COCO-C from universal sce-
nario and BDD100K from autonomous driving scenario).
Table 4 shows the changes on mCE under different scenar-
ios. Almost all of the CEs experience rises of various degrees
on them, with one exception that DDETR crashes when han-
dling autonomous driving scenarios. From the perspective of
the cross-scenario evaluation, we summarize our findings as
the followings:

• Finding 3.1. In the autonomous driving scenario, the
robustness of both the universal detectors and the
autonomous driving detectors is better than that in
the universal scenario. According to Table 4, all detec-
tors only yield a drop in mCE of less than 10 in the
autonomous driving scenario. However, in the universal
scenario, most of the detectors yield a larger drop inmCE
(the largest detector experiences a 14.9% drop). It shows
that object detectors are more than capable of handling
autonomous driving scenarios.
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• Finding 3.2. Compared with the two-stage and trans-
former detectors, the one-stage detectors perform
well in terms of stability when coping with the cross-
scenario application. In Table 4, the one-stage detectors
yielded smaller mCE drops in all scenarios than the other
detectors, especially in cross-scenarios. When develop-
ing the object detectors, the unclear application scenarios,
i.e., the training scenario and application scenario of the
detector does not match, may result in the cross-scenario
application.According toTable 4, the one-stage detectors
are recommended in this case.

• Finding 3.3. The object detectors with the multi-scale
detection mechanism perform better when dealing
with autonomous driving scenarios compared with
universal scenarios. According to Table 4, the perfor-
mance of different one-stage detectors also varies sig-
nificantly in handling cross-scenario applications. SSD
and YL3 detectors perform much better in autonomous
driving scenarios (SSD achieves a maximum improve-
ment of 9% in mCE and YL3 achieves 4.3%), while
YLA and CN detectors do not. We further investigate the
network architectures of the four detectors and find that
the multi-scale detection mechanism of SSD and YL3
might contribute to their performance. With the multi-
scale detectionmechanism,SSDandYL3detectors could
detect multi-scale objects in autonomous driving scenar-
ios, even those with long distances. This is because in
autonomous driving scenarios, the size and distance of
objects such as vehicles, pedestrians, and bicycles usu-
ally differ significantly, leading to different scales. The
multi-scale detection mechanism can effectively cope
with these objects of different scales, thus improving the
robustness of the object detection.

4.5 RQ4: Effectiveness of robustness enhancement
methods

In this RQ, we verify if the widely-used robustness enhance-
ment methods are effective against proposed real-world
corruption patterns. Table 5 presents the changes of CE com-
pared to Table 2 after employing one of CLAHE, ST, NLM,
and AT, respectively. In general, we find that ST and AT have
few effects on enhancing object detection robustness against
real-world corruption patterns, while CLAHE and NLM had
some effects on certain corruption patterns, but overall the
effects are limited.We summarize our findings as the follow-
ings:

• Finding 4.1. When object detection methods suf-
fer from real-world corruptions, the effectiveness
of robustness enhancement methods is limited. By
observing the changes in CE listed in Table 5, we find

that the majority of CEs show a significant increase. This
implies that when a robustness enhancement strategy is
employed, it does not actually enhance the robustness of
object detectors against real-world corruptions.

• Finding 4.2. CLAHE could enhance the object detec-
tors against corruptions related to illumination
changes. Our results in Table 5 show that, despite the
increase in CE against the other corruptions, there is a
decrease in CE when it comes to some certain corrup-
tions, e.g.,C E F andC ET H E . While both F and THE are
corruptions involving illumination changes, wich could
lead to the low contrast of the images. However, with
CLAHE, the contrast of images could be increased. Thus,
CLAHE could be a promising method for enhancing
object detection robustness against illumination corrup-
tions.

• Finding 4.3. NLM could enhance the object detec-
tors against corruptions involving spotty patterns. In
Table 5, NLM brings about a significant decrease in
C E B PC−D of all the detectors. In addition, with NLM,
there is only a slight increase in C ET H E (maximum 1.8,
minimum 0.6) of the detectors. According to Fig. 5, the
two corruptions generate data with spotty patterns. Con-
sidering NLMwould reduce the noises in the images, the
spotty patterns posed by the corruptions could be reduced
by NLM, making the object detectors more robust.

• Finding 4.4. ST and AT generate unrealistic data,
making it ineffective to enhance object detection
robustness against real-world corruptions. As we can
see fromTable 5, ST andATcannot improve object detec-
tion robustness. Instead, it might have a dramatic increase
in CE. We further study the data generated by ST and AT
and find that it is severely distorted. Such data, which is
less likely to occur in the real-world, would have negative
impacts on object detection performance.

4.6 RQ5: Types of flaws revealed in object detectors

From the above RQs, we can find that flaws exist in
object detectors in general, even if they are enhanced. This
inspires us to further investigate the flaw symptoms in object
detectors. To this end, we categorized the detected flaws in
RQ2-RQ4 into five different categories of typical flaw symp-
toms, namely CBWO, WBCO, WBWO, PMD, and MD, as
introduced in Sect. 3.5. The results presented in Fig. 9 show
the frequency of different flaw symptoms revealed in the
twelve selected object detectors. From the perspective of the
flaw symptoms, we obtain several interesting findings:

• Finding 5.1. If a detector finds a correct bounding
box of an object, there is a large probability that it
would categorized the object into the correct cate-
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Fig. 9 Distribution of flaws revealed in different object detectors

gory. Intuitively, for two sub-tasks in object detection,
i.e., object localization and classification, both of them
might be wrong. However, the results in Fig. 9 show that
when the bounding box is located correctly, the classifi-
cation barely goes wrong. This finding poses a challenge
to bounding box localization.

• Finding 5.2. There is a high probability that the detec-
tors could recognize the correct objects even if they
do not locate the correct bounding box. According to
Fig. 9, when the detectors do not miss the objects, the
most frequent flaws are WBCO flaws. It shows that the
detector recognizes the object instances correctly even
though the predicted bounding box is incorrect. The per-
formance drop on predicting bounding boxes does not
affect the detector’s classification of objects’ categories.

• Finding 5.3. Two-stage and one-stage object detec-
tors suffer from the missed detection more compared
with transformer-based methods. As shown in Fig. 9,
except for CenterNet, most of the models with two-
stage or one-stage architectures exhibit a large number
of PMD flaws. However, no PMD flaws are revealed in
the two transformer-based methods. Different from other
flaw symptoms, (P)MD might lead to more severe out-
comes in real-world (e.g., the missed detection of cars
in autonomous driving systems may cause car crashes),
which poses an urgent need to repair one-stage and two-
stage methods to avoid (P)MD.

• Finding 5.4. Anchor-free mechanisms of object detec-
tors could prevent (P)MD flaws. According to Fig. 9,
the CE detector does not suffer from (P)MD flaws,
which is the same as DETR and DDETR detectors.
The CE detector employs a center-keypoint detection
mechanism to locate objects without relying on anchors.
Similarly, the transformer-based object detectors, DETR

and DDETR, could locate objects without anchors via
the attention mechanism. With these anchor-free mecha-
nisms, the detectors could adjust the localization strategy
based on the actual size, shape and location of objects, to
ensure adaptive localization and reduce the (P)MDflaws.

5 Threats to validity

In terms of internal validity, one potential threat is that the
behavior of an object detector can vary when using different
environment parameters. To mitigate this threat, we chose to
use the same parameters as described in the official docu-
mentation of each detector to keep consistency. Further, we
confirmed that our results, i.e., the performance of detectors
are consistent with their source descriptions and demos (see
Table 3). In terms of external validity, one potential threat
is that our analysis results may not be generalized to other
object detectors. To mitigate this threat, we tried our best
to collect diverse categories of object detection architectures
with SOTA performance. In terms of construct validity, one
potential threat is that the evaluation metrics may not fully
describe the performance of object detectors. To mitigate
this threat, we use two different metrics and five different
severity levels of corruptions to comprehensively analyze
the performance and robustness of the object detectors in
our benchmark.

6 Conclusion

In this paper, we present a public benchmark for evaluating
object detection robustness. To the best of our knowledge,
this is the first benchmark on object detectors in terms of
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their robustness against real-world image corruptions. To this
end, we propose 16 real-world image corruptions based on
the potential damages in real-world image pipeline. Then
we leverage two large-scale object detection datasets, i.e.,
COCO and BDD100K, to create an 80 times larger one
based on the proposed image corruptions, namely COCO-
C and BDD100K-C. We evaluate 12 representative object
detectors covering three different model architectures (i.e.,
two-stage, one-stage, and transformer) on COCO-C, where
our evaluation results and findings show that different kinds
of flaws existed in these object detectors, posing an urgent
need in the community on designing robust object detectors.
Furthermore, our analysis of two widely-used robustness
enhancement techniques motivates further improvement on
enhancing object detection robustness, in order to build
safe and reliable object detection methods for safety-critical
applications.
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