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Abstract—Large Language Models (LLMs) have demonstrated
unprecedented capabilities in code generation. However, there
remains a limited understanding of code generation errors that
LLMs can produce. To bridge the gap, we conducted an in-
depth analysis of code generation errors across six representative
LLMs on the HumanEval dataset. Specifically, we first employed
open coding and thematic analysis to distill a comprehensive
taxonomy of code generation errors. We analyzed two dimensions
of error characteristics—semantic characteristics and syntactic
characteristics. Our analysis revealed that LLMs often made non-
trivial, multi-line code generation errors in various locations and
with various root causes. We further analyzed the correlation
between these errors and task complexity as well as test pass rate.
Our findings highlighted several challenges in locating and fixing
code generation errors made by LLMs. In the end, we discussed
several future directions to address these challenges.

Index Terms—Empirical Study, Code Generation, Large Lan-
guage Models

I. INTRODUCTION

Automatically generating code from natural language has
been a long-term pursuit across multiple research communities.
Recent advances in Large Language Models (LLMs) have led
to rapid, unprecedented improvements on this task [1]–[5].
Despite this great progress, LLMs still cannot reliably generate
correct code for many tasks. Currently, there is a lack of deep
understanding of the cases where LLMs fail. Specifically, it
remains unclear what types of code generation errors an LLM
typically produces and whether different LLMs make similar
errors. Answering these questions would help researchers gain
insights into the limitations of existing models and identify
opportunities for model improvement.

To bridge this knowledge gap, we conducted an in-depth
analysis of code generation errors made by LLMs. We focused
on six popular LLMs: CodeGen-16B [1], InCoder-1.3B [2],
GPT-3.5 [5], GPT-4 [4], SantaCoder [6], and StarCoder [3].
These models produced 557 incorrect code solutions on the
164 tasks from the HumanEval dataset [7]. Four of the authors
worked together to locate the erroneous parts of these incorrect
solutions and manually fix them. Specifically, for some tasks,
LLMs may propose an alternative solution that differs from
the ground truth solution in HumanEval, e.g., using a lambda
expression to process a sequence of data instead of using a
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loop. To avoid overfitting the ground truth, the authors manually
located and fixed errors following the problem-solving direction
of the LLM instead of simply comparing the LLM-generated
code with the ground truth.

We performed multiple rounds of open coding and itera-
tive refinement to analyze the characteristics of the located
errors. Specifically, we analyzed these errors alongside two
dimensions—the semantic characteristics and syntactic char-
acteristics of these errors:

• Semantic characteristics can help identify the high-level
root causes of these code generation errors. Representative
semantic characteristics include missing condition, wrong
(logical) direction, incorrect condition, etc. Analyzing these
semantic characteristics can help understand the limitations
of current LLMs in interpreting task requirements and
generating semantically correct programs.

• Syntactic characteristics can help localize where the error
occurs in an incorrect code solution. Representative syntac-
tic characteristics include incorrect code blocks, incorrect
function arguments, etc. Understanding these characteristics
allows for a better assessment of current LLMs’ abilities
to generate different kinds of code constructs. It can also
help inform the design of new techniques for localizing and
repairing code generation errors made by LLMs.

Our analysis shows that the majority of code generation
errors involve multiple lines of code, rather than simple errors.
These errors often require substantial code restructuring and
repair rather than simple fixes. Furthermore, while the overall
distribution of the syntactic characteristics of these errors (i.e.,
error locations) is similar across different LLMs, the semantic
characteristics of the errors (i.e., root causes) vary significantly
for different LLMs even for the same task. Interestingly, most
of the incorrect code solutions are compilable and runnable
without any compilation errors. Thus, we cannot easily capture
these errors via compiler check. Careful code review and high-
quality test cases are necessary to capture these errors. This
also implies that modern LLMs have adequately learned the
syntax rules of programming languages, but struggle with
understanding intricacies in natural language task descriptions
and generating delicate code with sophisticated logic.

In summary, this paper makes the following contributions:

• We established a taxonomy of both syntactic and semantic



characteristics of code generation errors through open coding
and thematic analysis. Our labeling results are available at a
GitHub repository [8].

• We analyzed the similarities and differences in the errors
made by different LLMs, as well as the bug-fixing effort,
the impact of task complexity, and the correlation between
test pass rates and different kinds of errors.

• We discussed the implications and future opportunities for
improving LLMs for code generation.

• We developed an interactive data analysis website to help
researchers and developers examine and explore code gener-
ation errors in different categories. The website is available
at https://llm-code-errors.cs.purdue.edu.

II. METHODOLOGY

A. Research Questions

This study investigates the following research questions.
• RQ1: What kinds of code generation errors do different

LLMs make? This question aims to uncover the common
characteristics and distinctions of code generation errors
made by different LLMs. This can help us understand
whether it is feasible to develop generic methods to improve
LLMs or whether these models need specialized treatment.

• RQ2: How much effort is needed to fix code generation
errors? In practice, it is unrealistic to expect LLMs to
generate fully correct code for every possible scenario.
Existing studies show that some incorrect code can still
serve as a useful starting point for developers [9], [10]. Thus,
it is important to understand what efforts are needed to fix
the incorrect solutions and whether it is possible to automate
the repair. This question aims to fill this knowledge gap.

• RQ3: How does the task complexity affect an LLM’s code
generation? Intuitively, complex tasks are more challenging
to solve than simple tasks. Yet it is unclear whether different
LLMs exhibit different code generation capabilities when
solving tasks of different complexity levels. Specifically,
it would be useful to find out whether there is an upper
bound on the complexity of tasks that LLMs can eloquently
solve, which can then be used to guide or estimate the effort
required for code review, testing, and repair.

• RQ4: Does partially failed code exhibit different characteris-
tics compared with fully failed code? This question explores
the distinctions between code that fails a subset of test cases
and code that fails all test cases. It can offer insights into
the specific challenges faced in achieving full correctness.

B. Code Generation LLMs

In this study, we focus on six representative code generation
LLMs: CodeGen-16B [1], InCoder-1.3B [2], GPT-3.5 [5],
GPT-4 [4], SantaCoder [6], and StarCoder [3]. As shown in
Table I, these models cover a wide range of model sizes and
model performance. CodeGen-16B was trained on 217GB
Python code from BigPython [1]. InCoder-1.3B was trained on
159GB of open-source repositories from GitHub, GitLab, and
StackOverflow. SantaCoder and StarCoder were trained on The
Stack dataset [11]. The training data of GPT-3.5 and GPT-4

TABLE I: Code generation LLMs used in this study

Model Release Size Performance
Pass@1 Incorrect Solutions

CodeGen-16B [1] Mar. 2022 16B 32.9% 110
InCoder-1.3B [2] Apr. 2022 1.3B 12.2% 144
GPT-3.5 [5] Nov. 2022 175B 73.2% 42
GPT-4 [4] Mar. 2023 1.7T 89.0% 18
SantaCoder [6] Apr. 2023 1.1B 14.6% 139
StarCoder [3] May. 2023 15.5B 34.1% 104

are currently unknown. As GPT-3.5 and GPT-4 are constantly
evolving, we used GPT-3.5-Turbo-0301 and GPT-4-0314, the
two most recent model checkpoints at the time of our analysis.

C. Collection of Incorrect Code Solutions

In this study, we utilize the widely used HumanEval
benchmark [7] to collect code generation errors made by LLMs.
HumanEval includes 164 hand-written Python programming
tasks, each accompanied by an average of 7.7 unit tests. These
tasks involve language comprehension, reasoning, algorithms,
and simple mathematics. For each task, we followed the
common practice in benchmarking the performance of code
LLMs [1]–[3] to prompt each LLM with the original prompt
from HumanEval, which includes a task description and several
exemplary test cases (2.7 on average). While there are more
advanced prompting strategies to augment LLMs for code
generation, we are more interested in the innate capability
of LLMs as the first step to understanding their limitations.
Nevertheless, we discuss this as a threat to validity in Sec. VI.
We also used greedy decoding with the temperature set to 0 to
ensure the reproducibility of our results. Then, we executed the
test cases to identify incorrect solutions. We also performed a
round of manual checks to find solutions that pass test cases but
are not fully correct since some tasks may not have sufficient
test cases. We found 19 such cases. Example 1 shows an
incorrect solution generated by GPT-3.5, which fails to handle
the case where x is 0. In this scenario, the output should be
"0" instead of an empty string. However, such test cases are
absent in the HumanEval benchmark. In the end, we identified
a total of 557 incorrect code solutions generated by the six
models. Table I shows the distribution.
# [Task 44] Change numerical base of input x to base.
def change_base(x, base):

result = ""
while x > 0: result, x = str(x%base) + result, x//base
return result

Example 1: Incorrect solution that passed all test cases

D. Manual Analysis of Incorrect Code Solutions

We performed open coding [12]–[15] to analyze the charac-
teristics of the 557 incorrect code solutions and developed a
taxonomy of code generation errors made by LLMs.
Open coding. From the 557 incorrect solutions, we first
randomly sampled 160 of them as a starting point for anal-
ysis. The sample size is statistically significant, with a 90%
confidence level and a 5.5% margin of error. Two authors
independently identified the erroneous parts of each incorrect
solution and documented the root causes of the errors. For
incorrect code solutions with multiple errors, the authors labeled
the characteristics of each individual error. Since LLMs may

https://llm-code-errors.cs.purdue.edu


TABLE II: Taxonomy of semantic characteristics of code generation errors made by LLMs.

Error Characteristic Example of Incorrect Solutions Correct Solution
Condition Error Missing condition # [Task 151] CodeGen-16b

def double_the_difference(lst):
sum = 0
for i in lst:

if i > 0 and i % 2 != 0:
sum += i ** 2

return sum

# [Task 151] Ground Truth
def double_the_difference(lst):

ans = 0
for num in lst:

if num % 2 == 1 and num >
0 and "." not in str(num): ans
+= num ** 2

return ans

Incorrect condition # [Task 44] GPT-3.5
def change_base(x, base):

r = ""
while x > 0:

rem, r = x % base, str(rem)+r
x = x // base

return result

# [Task 44] Ground Truth
def change_base(x, base):

if x == 0: return "0"
ret = ""
while x != 0:

ret, x = str(x%base) + ret, x // base
return ret

Constant Value Error Constant value error # [Task 51] SantaCoder
def remove_vowels(text):

vowels = ’aeiou’
return ’’.join([char for char in text if

char not in vowels])

# [Task 51] Ground Truth
def remove_vowels(text):

return "".join(list(filter(lambda ch: ch
not in "aeiouAEIOU", text)))

Reference Error Wrong method/variable # [Task 79] InCoder-1B
def decimal_to_binary(decimal):

return str(decimal) + "db"

# [Task 79] Ground Truth
def decimal_to_binary(decimal):

return bin(decimal) + "db"

Undefined name # [Task 83] CodeGen-16B
def starts_one_ends(n):

if n == 1: return 1
return starts_one_ends(n-1)+

ends_one_starts(n-1)

# [Task 83] Ground Truth
def starts_one_ends(n):

if n == 1: return 1
return 18 * 10 ** (n - 2)

Operation/
Calculation Error

Incorrect arithmetic operation # [Task 44] InCoder-1B
def change_base(x: int, base: int):

digits = []
while x:

digits.append(str(x % base))
x /= base

return ’’.join(reversed(digits))

# [Task 44] Ground Truth
def change_base(x: int, base: int):

if x == 0: return "0"
ret = ""
while x != 0:

ret = str(x % base) + ret
x //= base

return ret

Incorrect comparison operation # [Task 138] CodeGen-16B
def is_equal_to_sum_even(n):

return n <= 8 and n % 2 == 0

# [Task 138] Ground Truth
def is_equal_to_sum_even(n):

return n >= 8 and n % 2 == 0

Garbage Code Only comments # [Task 152] InCoder-1B
def compare(game,guess):

# Regenerate the task description.

# [Task 152] Ground Truth
def compare(game,guess):

return [abs(game[i] - guess[i]) for i in
range(len(game))]

Meaningless code snippet # [Task 138] StarCoder
def is_equal_to_sum_even(n):

pass

# [Task 138] Ground Truth
def is_equal_to_sum_even(n):

return n >= 8 and n % 2 == 0

Wrong (logical) direction # [Task 20] InCoder-1.3B
def find_closest_elements(numbers):

closest_to_one, closest_to_two = numbers
[0], numbers[1]

for number in numbers:
if number < closest_to_one:

closest_to_one = number
if number > closest_to_two:

cloeset_to_two = number
return closest_to_one, closest_to_two

# [Task 20] InCoder-1.3B
def find_closest_elements(numbers):

min_diff, min_pair = float("inf"), None
for l, r in zip(numbers[:-1], numbers

[1:]):
diff = r - l
if diff < min_diff:

min_diff = diff
min_pair = (l, r)

return min_pair

Incomplete Code/
Missing Steps

Missing one step # [Task 16] InCoder-1B
def count_distinct_chars(string):

return len(set(string))

# [Task 16] Ground Truth
def count_distinct_chars(string):

return len(set(string.lower()))Missing multiple steps
Memory Error Infinite loop # [Task 100] CodeGen-16b

def make_a_pile(n):
if n % 2 == 0:

return [n] + make_a_pile(n+2)
else:

return [n] + make_a_pile(n+1)

# [Task 100] Ground Truth
def make_a_pile(n):

ans, num = [], n
for _ in range(n):

ans.append(num)
num += 2

return ans

generate alternative solutions compared with the ground-truth
solution from HumanEval, we chose to manually debug the
incorrect solution rather than simply comparing it with ground
truth. Specifically, the two authors executed the failed test cases
and performed step-by-step debugging to locate the errors and
identify their root causes.

The authors documented all error locations and root causes
and discussed them with other authors after the initial coding.
They refined code labels and came up with an initial codebook.
At this stage, we found that code generation errors made by
LLMs can be categorized along two dimensions based on their
semantic and syntactic characteristics. Semantic characteristics
help identify the high-level root causes of code generation
errors, such as a wrong logical direction to solve the task. In
contrast, syntactic characteristics assist in error localization,
such as determining whether the error is in the method name
or the arguments. The initial codebook includes seven semantic
characteristics and eight syntactic characteristics.
Iterative refinement of the codebook. After obtaining the initial
codebook, we invited another two authors to iteratively improve
the codebook. The four authors first independently analyzed 10
incorrect code snippets following the same procedure described

above and labeled the error characteristics based on the initial
codebook. If a new characteristic was identified, an author
created a new label to describe the characteristic.

After the first round of labeling, we computed Fleiss’
Kappa [16] to measure the inter-rater agreement. We used
Fleiss’ Kappa instead of Cohen’s Kappa, since we had more
than two labelers and more than two labels. The initial
scores were 0.37 and 0.32 for semantic characteristics and
syntactic characteristics, respectively [17]. To figure out where
the disagreements were, the four authors met to discuss the
disagreements and exchanged opinions about updating the
codebook. They found that the low agreement was due to
missing error characteristics in the initial codebook.

The four authors then refined the codebook with 11 semantic
characteristics and 13 syntactic characteristics and labeled
another batch of 10 incorrect solutions. The Fleiss’ Kappa
scores of this round of labeling were 0.68 and 0.69 for seman-
tic characteristics and syntactic characteristics, respectively,
indicating substantial agreement [17]. The authors further
discussed the disagreements and refined the codebook with 13
semantic characteristics and 14 syntactic characteristics. Then,
they conducted the third round of labeling with a new batch of



TABLE III: Taxonomy of syntactic characteristics of code generation errors made by LLMs.

Error Characteristic Example of Incorrect Solutions Correct Solution
Conditional Error If error # [Task 151] CodeGen-16b

def double_the_difference(lst):
sum = 0
for i in lst:

if i > 0 and i % 2 != 0:
sum += i ** 2

return sum

# [Task 151] Ground Truth
def double_the_difference(lst):

ans = 0
for num in lst:

if num%2==1 and num>0 and "." not
in str(num): ans += num ** 2

return ans

Loop Error For error # [Task 121] GPT-3.5
def solution(lst):

sum = 0
for i in range(1, len(lst), 2):

if lst[i] % 2 != 0: sum +=lst[i]
return sum

# [Task 121] Ground Truth
def solution(lst):

return sum([x for idx, x in
enumerate(lst) if idx%2==0 and x

%2==1])
While error

Return Error Incorrect return value # [Task 103] GPT-3.5
def rounded_avg(n, m)

if n > m: return -1
avg=round(sum(range(n,m+1))/(m-n+1))
return bin(avg)[2:]

# [Task 103] Ground Truth
def rounded_avg(n, m)

if n > m: return -1
avg = round((n + m) / 2)
return bin(avg)

Method Call Error Incorrect function name # [Task 54] StarCoder
def same_chars(s0, s1):

return sorted(s0) == sorted(s1)

# [Task 54] Ground Truth
def same_chars(s0, s1):

return set(s0) == set(s1)Incorrect function arguments
Incorrect method call target

Assignment Error Incorrect constant # [Task 138] InCoder-1.3B
def is_equal_to_sum_even(n):

return n >= 4 and n % 2 == 0

# [Task 138] Ground Truth
def is_equal_to_sum_even(n):

return n >= 8 and n % 2 == 0Incorrect arithmetic
Incorrect variable name
Incorrect comparison

Import Error Import error # [Task 133] StarCoder
def sum_squares(lst):

return sum[int(math.ceil(i)**2 for i in
lst]

# [Task 133] Ground Truth
def sum_squares(lst):

import math
return sum(map(lambda x: math.ceil(x)**2,

lst))

Code Block Error Incorrect code block # [Task 83] InCoder-1.3B
def starts_one_ends(n):

count = 0
while n > 0:

count, n = count + 1, n / 10
return count

# [Task 83] Ground Truth
def starts_one_ends(n):

if n == 1:
return 1

return 18 * 10 ** (n - 2)

Missing code block # [Task 60] CodeGen-16B
def next_smallest(lst):

if len(lst)<2: return None
lst.sort()
return lst[1]

# [Task 60] Ground Truth
def is_prime(n):

if len(lst)<=1: return None
sorted_list=sorted(lst)
for x in sorted_list:

if x!=sorted_list[0]: return x

10 errors. The authors did not find any new error characteristics
in this round, and the Fleiss’ Kappa scores increased to 0.84
and 0.71. At this point, the authors believed that the codebook
was comprehensive enough. The final codebook includes 13
semantic characteristics and 14 syntactic characteristics.
Analyzing the remaining dataset. The two authors used the
final codebook to label the remaining incorrect solutions. The
final Fleiss’ Kappa scores were 0.91 and 0.91 for semantic
and syntactic characteristics, indicating perfect agreement [17].
They had disagreements on 29 errors’ semantic characteristics
and 28 errors’ syntactic characteristics. These disagreements
were resolved after discussing them with all the authors. No
new error characteristics were found. The final coding results
were documented in a spreadsheet and shared on GitHub [8].
The whole labeling process took about 328 person-hours.

E. Analysis of Repair Effort

To investigate the repair effort (RQ2), we employ three
different metrics to measure the similarity between incorrect
model-generated code and the corresponding correct solution.
To ensure a fair comparison, we first removed all LLM-
generated comments before calculation. We used Levenshtein
distance [18] to compute the minimum number of edits (i.e.,
insertions, deletions, or substitutions) required to change an
incorrect solution to the correct solution. We also used Jaccard
similarity [19] as another textual similarity metric. Both of them
are widely used for fault localization [20], [21]. We further
used CodeBERTScore [22] to measure the semantic similarity
between the incorrectly generated code and the ground truth.

Note that for some tasks, an LLM may propose an alternative
solution with errors compared with the ground-truth solution
in HumanEval. We identified 17 incorrect solutions where the

LLM proposed an alternative way to solve the task but did
not correctly solve it. In such cases, it is unfair to directly
compare the incorrect code with the ground truth. To address
this issue, one author manually solved the task following the
LLM’s solution and computed the metrics by comparing the
incorrect solution with the alternative, correct solution.

III. RESULTS

In this section, we denote the 164 programming tasks in
HumanEval [7] as Task 0-163. Due to the page limit, some
code examples are simplified. We refer the readers to our
Github repository for more details [8].

A. RQ1: Characteristics of Code Generation Errors

Table II and Table III present the finalized taxonomy of code
generation errors made by LLMs. The taxonomy categorizes
code generation errors based on their semantic characteristics
(i.e., root causes) and syntactic characteristics (i.e., error
locations). In total, there are 13 semantic characteristics in
7 categories and 14 syntactic characteristics in 7 categories.
We elaborate on each of them below.

1) Semantic Characteristics:
• Condition Error includes missing condition and incorrect

condition. Missing condition is when a necessary condition
is omitted, while incorrect condition is when an condition is
incorrectly formulated in an if statements or a loop, leading
to errors.

• Constant Value Error is an error that occurs when an
incorrect constant value is set, which can occur in function
arguments, assignments, or other parts of the code.

• Reference Error involves incorrect references to variables or
functions, which includes the usage of an incorrect function
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Fig. 1: Distribution of semantic characteristics of code generation errors made by six LLMs.
or variable that does not match the requirement (wrong
method/variable) and reference to a variable or method name
that has not been defined (undefined name).

• Operation/Calculation Error indicates the mistakes in math-
ematical or logical operations, e.g., an incorrect comparison
operation in a return statement “return n <= 8.”

• Garbage Code is defined as unnecessary or irrelevant code
that does not contribute to the intended functionality. It
can occur in several forms: a meaningless code snippet,
where the code, though syntactically correct, is irrelevant to
the assigned task; only comments, where the code consists
exclusively of comments without any executable statements;
or wrong (logical) direction, where the code significantly
deviates from the intended task logic or expected outcomes.

• Incomplete Code/Missing Steps indicates the absence of
crucial steps to achieve the task.

• Memory Error includes infinite loop, which is a loop or
recursion that never terminates.

Comparison between LLMs. Fig. 1 shows the distribution of the
13 semantic characteristics for each LLM. We find that several
characteristics are frequently shared among all LLMs, such as
incorrect condition and wrong (logical) direction. This implies
that all LLMs struggle with certain kinds of task requirements,
such as handling complex logic conditions, regardless of their
model size and capability.

However, small models such as InCoder and CodeGen are
more likely to generate meaningless code and code that miss
multiple steps, while larger models such as GPT-3.5 and GPT-
4 tend to make more constant value errors and arithmetic
operation errors. Notably, incorrect code generated by GPT-
4 only exhibited 9 of the 13 semantic characteristics, while
incorrect code generated by smaller models exhibited all sorts
of errors. One plausible reason is that GPT-3.5 and GPT-
4 are much larger and are thus better at interpreting task
descriptions. For instance, neither GPT-3.5 nor GPT-4 generated
any meaningless code snippets. In contrast, 7% to 25% of the
incorrect code solutions produced by the other four LLMs

consist of meaningless code snippets.

Finding 1: The most common semantic characteristics
among six LLMs are wrong (logical) direction and incorrect
condition, indicating that all LLMs struggle with interpreting
complex task requirements and generating correct logic
conditions. Compared with ultra-large models such as GPT-
3.5, small models generate more meaningless code and code
that misses multiple steps.

2) Syntactic Characteristics:

• Conditional Error indicates there is an error within the ‘if’
statement, causing the code to behave incorrectly.

• Loop Error indicates there is an iteration mistake in
the ‘for’ or ‘while’ loop, either through incorrect loop
boundaries or mismanagement of loop variables.

• Return Error indicates the error is in a return statement that
returns a wrong value or a value in the unexpected format.

• Method Call Error indicates the error is in a function call. It
can be incorrect function name, wrong arguments (incorrect
function arguments), or incorrect method call target.

• Assignment Error indicates the error is in an assignment
statement. It can be an incorrect constant/variable name/com-
parison operator used in an assignment, leading to errors or
unexpected behaviors in the code’s execution.

• Import Error indicates the error is in an import statement.
• Code Block Error indicates multiple statements are incor-

rectly generated or omitted, leading to the task failure.

Comparison between LLMs. Fig. 2 shows the distribution of the
14 syntactic characteristics across the six LLMs. We observed
similar distribution patterns as semantic characteristics. For
all models, the top 3 error locations are either in entire code
blocks (i.e., multiple statements in a sequence) or in an if
statement. The fact that all LLMs struggle with generating
entire code blocks correctly implies that many code generation
errors are not small errors and require substantial efforts to fix,
as investigated further in RQ2.
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Fig. 2: Distribution of syntactic characteristics of code generation errors made by six LLMs.
Compared with other models, the code generation errors

from GPT-4 are more well-contained in a few types of code
constructs. GPT-4 did not introduce any errors in method call
expressions, variable references, or constant values used in an
assignment statement. By contrast, GPT-3.5 still hallucinates
when generating method calls. Other models exhibited a more
diverse set of error locations compared with GPT-4 and GPT-
3.5. Interestingly, CodeGen-16B and InCoder-1.3B have more
cases of incorrect function name, while GPT-3.5, SantaCoder,
and StarCoder encounter incorrect function arguments more
frequently. This implies that during pre-training, CodeGen and
InCoder are less effective in learning the mappings between
task descriptions and which functions to use to achieve the
tasks. One interesting direction to improve these models is
to design pre-training tasks that predict function names and
arguments to strengthen the model’s memory of function usage.

Finding 2: More than 40% of the syntactic characteristics
made by six LLMs are missing/incorrect code block. The
studied LLMs also encountered a significant number of if
error and incorrect function name/argument.

3) Mappings Between Semantic and Syntactic Character-
istics: To further investigate the relationship between the
semantic and syntactic characteristics of these code generation
errors, we visualize their mappings as Sankey diagrams in
Fig. 3. We observed that certain semantic characteristics are
often paired with specific syntactic characteristics. For instance,
wrong (logical) direction typically corresponds to incorrect
code block. In other cases, a single syntactic characteristic
can be associated with multiple semantic characteristics. For
example, an incorrect function argument might arise from
constant value error, incorrect arithmetic operation, or wrong
method/variable. These results indicate that errors in similar
locations may have various semantic root causes and thus
require different kinds of fixes.

For example, to fix SantaCoder’s solution for Task 50
(Example 2), one only needs to replace the constant 97 with

26. By contrast, fixing the incorrect function argument in
CodeGen-16B’s solution for Task 149 is more challenging, as
it requires generating an additional comparator function as the
argument of the lambda function (Example 2).
# [Task 50] Decode the string that is encoded by shifting
# 5 characters in the alphabet
def decode_shift(s):

return "".join([chr(((ord(ch) - 5 + 97) % 26) + ord("a"
)) for ch in s])

# [Task 149] Delete the strings that have odd lengths.
# Return a sorted list ascending by length of each word.
# Sort alphabetically for words of the same length.
def sorted_list_sum(lst)

return sorted(list(filter(lambda x: len(x)%2==0, lst)),
key=len)

Example 2: Incorrect function argument
We also found that one kind of semantic characteristic, such

as constant value error, may occur in different kinds of loca-
tions, such as if statements and function calls. Precisely locating
such errors can, therefore, be challenging. For instance, in Task
91 (Example 3), GPT-4 should execute startswith(’I ’)
instead of startswith(’I’) since a boredom is a sentence
that starts with the word “I” rather than the character “I.” While
the fix itself is small, it requires a deep understanding of the
task to derive the fix.
# [Task 91] Count the number of boredoms. A boredom is a
# sentence that starts with the word "I". Sentences are
# delimited by ’.’, ’?’ or ’!’.
def is_bored(S):

sentences = [s.strip() for s in re.split(’[.!?]’, S)]
return sum(1 for s in sentences if s.startswith("I"))

Example 3: Constant value error by GPT-4

4) The Impact of Training Data: Regarding semantic
characteristics, we found that GPT-3.5 and GPT-4 did not
generate any meaningless code snippets, unlike the other four
LLMs. This might be due to their training on significantly
larger datasets, enhancing their ability to avoid meaningless
outputs. In terms of syntactic characteristics, we observed that
CodeGen-16B produced a smaller proportion of incorrect code
blocks compared to the other models. This could be attributed
to its specialized training with Python code data alone, which
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Fig. 3: Mappings between semantic and syntactic error characteristics of code generation errors made by six LLMs.
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Fig. 4: Levenshtein distance between the incorrect code and correct code. The vertical dashed lines indicate the medians.
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Fig. 5: CodeBERTScore between the incorrect code and correct code. The vertical dashed lines indicate the medians.

possibly contributed to reducing the generation of large chunks
of syntactically incorrect code. In contrast, the other LLMs were
trained on code corpora of multiple programming languages.

B. RQ2: Repair Effort for Code Generation Errors
Fig. 4 shows the distribution of Levenshtein distances. All

models exhibit a wide range of Levenshtein distances for
incorrect code, with median distances around or greater than
100. Notably, 84.21% of the incorrectly generated code has
Levenshtein distance scores above 50 edits, with 52.63% of
them requiring more than 200 edits. The results of Jaccard
similarity show similar trends as the Levenshtein distances. Due
to the page limit, we refer readers to our GitHub repository [8]
for the detailed results of Jaccard similarity.

As shown in Fig. 5, the median CodeBERTScore values are
approximately 0.2 for the six LLMs, except for GPT-3.5, which
has a median similarity of 0.05. Additionally, a large portion
of CodeBERTScore values across all six LLMs falls below 0.1.
According to [22], a CodeBERTScore value of 0 indicates that
two code snippets are unrelated, while a value of 1 indicates
that the snippets are exactly the same. These results indicate

that the majority of the incorrect solutions deviate significantly
in semantics from the correct solutions. Overall, both low
textual and semantic similarities suggest that the incorrect
code generated by LLMs often exhibits big differences from
the correct solutions, not just minor errors. Such observations
are also aligned with our findings in RQ1—LLMs tend to
make non-trivial errors such as missing multiple steps and
wrong logical direction. Addressing these issues would require
substantial edits. For instance, the median number of edits to
fix errors of missing multiple steps is 108 edits.

Interestingly, GPT-3.5 and GPT-4, despite having high
performance (Table I), exhibit larger deviations when generating
incorrect code, with greater median Levenshtein distances
compared to other models. This suggests that though GPT-
3.5 and GPT-4 are more accurate in general, when they make
mistakes, the mistakes are likely to cause a larger deviation
(e.g., a large incorrect code block) from the correct solution
and thus require more edits to fix.

Following the automated program repair literature [23], we
also classify all incorrect code snippets into three categories
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based on the effort required to fix them: (1) single-line errors,
(2) single-hunk errors, and (3) multi-hunk errors. Specifically,
a “hunk” refers to several contiguous lines in a program. Fig. 6
shows the distribution. Overall, the majority of errors are single-
hunk or multi-hunk errors, which require substantial effort to
repair compared with single-line errors. Compared with other
LLMs, GPT-3.5 and GPT-4 exhibit a more balanced distribution
among the three categories. SantaCoder made the most single-
line errors (35%). StarCoder made the most single-hunk errors
(57%). Notably, the least accurate model, InCoder-1.3B, made
the most multi-hunk errors (41%).

Finding 3: The majority of incorrect code solutions
generated by the six LLMs deviate significantly from the
correct code. This implies that fixing LLM-generated code
requires non-trivial efforts.

C. RQ3: Impact of Task Complexity

To the best of our knowledge, there is no established metric
to measure task complexity. In this study, we used the length of
the task description (i.e., the number of words in the prompt)
and the length of the correct solution in terms of lines of code
(LOC) as proxy metrics for task complexity. It is a pragmatic
choice to enable objective measurements, but we acknowledge
its limitation and discuss the potential threats to validity in
Sec. VI. To avoid inflating the prompt length, we removed all
test cases from the prompt. We also noticed that 20 ground-truth
solutions only contain one LOC but with complex constructs
such as lambda expressions. Therefore, we used the number
of abstract syntax tree (AST) nodes as an alternative metric to
LOC to verify its validity.

We investigated whether there was a significant difference
between the complexity of successfully solved tasks and the
complexity of failed tasks. We ran the Mann-Whitney U -test
to examine the statistical difference in task complexity for
each LLM. Fig. 7 shows the results. We observed a statistically
significant difference in both prompt length and LOC of correct
solutions among all six LLMs. Specifically, the p-values for
prompt length are 4e-9, 5e-9, 2e-5, 2e-10, 2e-9, and 5e-4; and
the effect sizes are 0.82, 1.38, 0.71, 0.77, 1.32, and 0.75 for
the six models in the order listed in Fig. 7a. The p-values for
LOC of correct solutions are 3e-6, 4e-5, 6e-3, 1e-2, 1e-5, and
1e-4; and the effect sizes are 0.72, 0.77, 0.63, 0.65, 0.69, and
0.73, respectively. The number of AST nodes shows a similar
distribution as LOC (Fig. 7c), where the correct solutions of
successfully solved tasks have significantly more AST nodes.
The p-values are 2e-7, 4e-5, 6e-3, 1e-2, 1e-5, and 1e-4; the
effect sizes are 0.65, 0.88, 0.30, 0.43, 0.64, and 0.74. We
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Fig. 7: Distribution of passed/failed tasks’ complexity

further calculated the Pearson correlation coefficient between
the number of AST nodes and LOC, which shows a statistically
significant correlation (r=0.864, p=4e-50). This shows the
consistency of our findings based on different metrics.

We further dig into each LLM’s failed tasks with a prompt
longer than 150 words. Based on the semantic taxonomy
described in Sec. III-A, a large portion (64.0%) of these failed
tasks are Garbage Code (i.e., unnecessary or irrelevant code
that does not contribute to the intended functionality). For
instance, Task 129’s prompt includes 249 words, which requires
returning a path with a length of k in a given grid that has
the minimum sum of values alongside this path. InCoder-1.3B
failed to understand the complex task requirement and only
generated a sequence of meaningless appending operations
(Example 4).
# [Task 129] Given a grid with N rows and N columns (N >=
# 2) and a positive k, each cell of ... (230 words left)
def minPath(grid, k):

ans. visited = [], {}
visited[grid[0][0]] = True
ans.append(grid[0][0])
ans.append(grid[0][1])
...

Example 4: Meaningless code snippet by InCoder-1.3B

We also observed similar patterns in the LOC metric.
Specifically, we looked into programming tasks whose ground-
truth solution has more than 12 lines of code. We found that
55.9% of these failed tasks are Garbage Code. For example,
Task 105 requires three steps: 1) sorting an array of integers
between 1 and 9 inclusive, 2) reversing the sorted result, and
3) replacing each digit with its corresponding name as a string.
The correct solution has 24 lines of code. However, CodeGen-
16B failed to understand the task requirements and returned
only an empty array (Example 5).
# [Task 105] Given an array of integers, sort the integers
# that are between 1 and 9 inclusive, reverse the
# resulting array, and then replace each digit by its
# corresponding name "One", "Two" ... (144 words left)
def by_length(arr): return []

Example 5: Meaningless code snippet by CodeGen-16B
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Finding 4: We observed a significant performance gap
between short, simple problems and long, complex ones.
When the task prompt exceeded 150 words or the correct
solution required more than 12 lines of code (LOC), about
60% outputs are Garbage Code. This highlights the research
opportunity of estimating the upper bound of the task
complexity that code generation LLMs can handle.

D. RQ4: Impact of Test Pass Rate

Since HumanEval [7] provides test cases for each task, we
are interested in whether completely failed code (i.e., failing all
test cases) has different error characteristic patterns compared
with partially failed code (i.e., failing a subset of test cases).
Note that we excluded the 19 cases identified in Sec. II-C that
passed all tests but are not equivalent to the ground truths.

Fig. 8 shows the test pass rate distribution of incorrect
solutions with different semantic characteristics. Only comments
and meaningless code are the top two characteristics that lead to
complete failures. Though undefined name sounds like a small
error, the majority of code with undefined names also leads
to complete test failures due to runtime crashes. Surprisingly,
while some error characteristics, such as missing multiple steps,
sound severe by definition, they do not often lead to complete
failures. After digging into some instances, we noticed that
this was because LLMs did not completely misunderstand the
task description, and the generated code could still pass some
weak test cases.

For instance, Task 125 requires the program to split on
commas if there is no space in the string. If there is also
no comma in the string, the program should perform other
operations. However, the code generated by CodeGen-16B only
split the input string into spaces while missing the remaining
steps. As a result, it can only pass the test cases that include
spaces, leading to a partially failed task (Example 6).
# [Task 125] Given a string, return words split on space;
# if no space, split on ’,’; if no ’,’, return the number
# of lower-case letters with odd order in the alphabet.
def split_words(txt): return txt.split()

Example 6: Missing multiple steps by CodeGen-16B
Another surprising finding is that code with the wrong

direction can pass some test cases accidentally. For example, in
Task 75, the code generated by InCoder-1.3B does not follow
the task instructions (Example 7). However, it can pass a few
test cases, such as 5, 10, and 30. One plausible reason is
that since the prompt includes test cases, LLMs may have
memorized a superficial correlation between test cases and
some other irrelevant solutions that pass those test cases.
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# [Task 75] Return true if the given number is the
# multiplication of 3 prime numbers and false otherwise.
def is_multiply_prime(a): return a < 100 and a % 3 == 0

Example 7: Wrong (logical) direction by InCoder-1.3B

Finding 5: When LLM-generated code only passes a subset
of the given test cases, it is more likely to contain errors
with missing multiple steps and incorrect condition. By
contrast, completely failed code (no test cases passed) have
meaningless code snippet more frequently.

In terms of syntactic characteristics (Fig. 9), we observed
an obvious difference on if error, where the majority of code
with this error led to partial failure (82% v.s. 18%). This is
because when encountering if error, LLMs were more likely
to only misinterpret a specific condition requirement while
generating correct code for the other parts. For instance, in
Task 0, SantaCoder only considered the adjunct elements in
the given list (Example 8). As a result, it failed to pass the
test case where the two closet elements were not adjunct.
# [Task 0] Check if in the given list of numbers, are any
# two numbers closer to each other than given threshold.
def has_close_elements(numbers, threshold):

if len(numbers) < 2: return False
for i in range(len(numbers) - 1):

if abs(numbers[i] - numbers[i+1]) > threshold:
return True

return False

Example 8: An if error example by SantaCoder

Finding 6: For syntactic characteristics, LLMs made more
if error in partially failed tasks (82%) than in fully failed
ones (18%). These subtle error characteristics in partially
failed tasks, likely due to missed conditions, may be fixable
with traditional automated program repair techniques.

IV. DISCUSSION AND FUTURE WORK

Our findings shed light on several future directions to
improve the quality and reliability of LLM-generated code.
Repairing Errors in LLM-generated Code. Our Finding 1
and Finding 2 reveal that errors made by different LLMs
exhibit a wide range of different semantic and syntactic
characteristics. Single-line logic errors such as if errors and
incorrect function arguments may be relatively easy to fix,
since existing automated program repair (APR) techniques are
specialized to fix such errors [24]–[30]. However, our Finding 2
indicates that many errors made by code LLMs involve multiple
lines of code, which require substantial edits to fix.

To overcome the limitations of traditional APR techniques,
recent work has proposed to leverage LLMs to build program



repair agents that are capable of synthesizing more complex
patches [31]–[33]. These approaches typically rely on coarse-
grained information such as error messages to guide the repair
process. By contrast, our taxonomy provides a more detailed
analysis of code generation errors based on their semantic
and syntactic characteristics. We believe that leveraging this
fine-grained information to repair errors in LLM-generated
code is a promising direction. Specifically, one can first train
a machine learning model to predict the types of errors. Then,
the predicted errors can then be encoded in the prompt to guide
the repair agent. For instance, instead of prompting the repair
agent with “fix the bug at Line 6,” one can prompt the agent
with “fix the incorrect function arguments at Line 6,” which
may lead to a more accurate patch.

To demonstrate the effectiveness of repairing code generation
errors with our labeled characteristics, we compared the perfor-
mance of prompting GPT-4 to repair its incorrect code solutions
with and without labeled semantic and syntactic characteristics
(detailed prompts are available in our repository [8] ). Since
GPT-4 generated only 18 incorrect solutions on the HumanEval
dataset, we included incorrect solutions generated by GPT-
4 from an additional dataset, BigCodeBench-Hard [34], to
increase the sample size. We selected BigCodeBench-Hard
since it provides more challenging coding tasks compared
to HumanEval and can better demonstrate the potential of
fixing code generation errors using our taxonomy. In total, our
sample set includes 18 incorrect solutions from HumanEval
and 84 incorrect solutions from BigCodeBench-Hard. All
these solutions were generated using the original prompt
provided by each dataset and a decoding temperature of 0,
which is consistent with the settings in Sec. II-C. Two authors
independently labeled the error characteristics of these solutions
using our taxonomy. The Fleiss’ Kappa scores for semantic
and syntactic characteristics were 0.91 and 0.93, indicating
almost perfect agreement. All disagreements were resolved
through discussion. Finally, we prompted GPT-4 to repair these
incorrect solutions using the labeled error characteristics.

On HumanEval, GPT-4 was able to repair 7 out of 18
incorrect solutions by prompting with our labeled error charac-
teristics, while it repaired only 4 out of 18 incorrect solutions
without these characteristics. On the more challenging dataset,
BigCodeBench-Hard, our method shows a bigger improvement
over the baseline. Specifically, GPT-4 was able to repair 12
incorrect solutions with our labeled error characteristics while
only 3 incorrect solutions without these characteristics. These
results demonstrated that our taxonomy and labeled error
characteristics are even more helpful when repairing incorrect
solutions for challenging tasks.
Fault Localization for LLM-generated Code. Precisely locating
the error location is an important first step for fixing code
generation errors. As shown by Finding 2, code generation
errors can occur in a variety of code constructs, which poses
challenges to locating them precisely. Although many fault
localization approaches have been proposed [21], [35]–[37],
these methods may still fall short in locating errors in LLM-
generated code. Traditional approaches, such as spectrum-

based fault localization, rely heavily on high-quality test cases
that comprehensively examine different execution paths in a
program. However, it is effortful and time-consuming to design
test cases, which limits the utility of these approaches. Recently,
deep learning has also been applied to fault localization [36],
[37], typically using features extracted from source code
and error messages. For code generated by LLMs, there
is richer information from different sources, such as logits,
token probability distribution, and self-attention scores at each
decoding step. It would be interesting to investigate whether
such information, together with error messages and other code
characteristics, can be leveraged to predict at which step the
model may start generating incorrect code.
Estimating the Correctness of LLM-generated Code. Our
Finding 4 shows that current LLMs continue to struggle with
understanding and solving complex task requirements. This
observation raises several interesting research questions. First,
for a given code generation LLM, can we develop a method
to estimate the upper bound of task complexity that this LLM
can handle? In this study, we have only experimented with
simple metrics such as prompt length and LOC of the correct
solution. Further investigation on this question could help
assess the capabilities and limitations of a code generation
LLM more accurately, leading to more reliable and trustworthy
code generation. Second, for a given programming task, can
we use prompt characteristics, such as length, to predict the
task’s difficulty and the correctness of the generated code?
Some recent work leverages LLMs as a judge for code
correctness without the need of test cases [38], [39]. While
they achieve promising accuracy on simple benchmarks (e.g.,
73.13% by CodeJudge [39] on HumanEval), the accuracy on
more challenging ones needs more improvement (e.g., 54.56%
on BigCodeBench). Such techniques could help developers
better allocate their code review and testing effort based on
code correctness estimation.

V. RELATED WORK

LLM-based Code Generation. LLMs have shown great poten-
tials in code-related tasks, such as generation [1], [2], [40], [41],
summarization [42]–[44], understanding [45], [46], search [47]–
[49], and translation [50]. Recent work on code generation can
then be roughly categorized into three groups: (1) developing
high-quality training data [51]–[53], (2) developing better
instruction fine-tuning techniques [54]–[56], and (3) developing
better prompting strategies [57]–[65]. Compared to these efforts,
our research focuses on analyzing the errors LLMs produce
and deriving empirical insights to help develop new methods in
the direction and contribute to better LLM-enabled intelligent
software engineering.
Quality of LLM-generated Code. Evaluating the quality
of LLM-generated code can reveal the current approach’s
shortcomings and guide future improvement. While prior
research has delved into facets such as robustness [66], [67],
security [68], [69], and attention alignment [70], studies
focusing on the correctness of LLM-generated code [7], [71]–
[74] are of particular relevance to our work.



Liu et al. [73] evaluated the quality of code generated by
ChatGPT, addressing factors such as compilation/runtime errors
and coding style. Different from their work, we investigated
a broader range of LLMs and analyzed fine-grained error
characteristics and their correlations with task complexity, test
pass rates, etc. Pan et al. [75] introduced a taxonomy for LLM’s
code translation bugs. A key distinction is in the origin of errors,
where Pan et al.’s work focuses on code-to-code translation,
while our work focuses on NL-to-code generation. Our study
also identifies distinct semantic error characteristics (e.g., wrong
(logical) direction) and syntactic error characteristics (e.g.,
missing/incorrect code block).

Finally, Liu et al. [74] conducted a study of the quality
of code generated by ChatGPT, assessing their correctness,
understandability, and security. In their examination of code
correctness, they primarily focused on compile errors and
runtime crashes. Our research differs from theirs in two key
respects: (1) Our study subjects are more diverse with both
open-source and closed-source models; (2) our taxonomy also
considers behavior deviations informed by test failures in
addition to compiling errors and crashes. Based on the findings,
we further provide actionable suggestions and implications for
future enhancements in LLM-enabled code generation.
Taxonomy on Software Defects. Building a systematic tax-
onomy of software bugs can help stakeholders understand
the pitfalls of target systems and provide guidance for better
development practices. One of the early attempts was the
orthogonal defect classification proposed by IBM Research [76],
[77]. Since then, numerous endeavors have been made to
construct defect taxonomies targeting different programming
languages [78]–[86] or different applications [87], [88]. Unlike
previous attempts that focused on bugs in real-world software
projects, our work focuses on LLM-generated code. Our
findings reveal that a large portion of code errors made by
LLMs exhibit complex semantic characteristics rather than
subtle errors usually introduced by human programmers.

VI. THREATS TO VALIDITY

Threats to Internal Validity. One potential threat comes from
our manual analysis process, where labelers may have different
opinions and sometimes may make mistakes. To mitigate this,
four of the authors first performed open coding and iteratively
refined our codebook until a substantial agreement was achieved
before two of the authors labeled the complete dataset. Our
final Fleiss’ Kappa regarding the semantic and syntactic
characteristics are 0.91 and 0.91, respectively, indicating almost
perfect agreement [17].
Threats to External Validity. One potential threat lies in the
choice of dataset. Considering the extensive labeling effort
(e.g., running the code and performing step-by-step debugging
to locate the root cause), we have only labeled one dataset.
In future work, one may consider labeling more datasets to
confirm the generalizability of our findings. Nevertheless, given
the size of our labeled dataset (557 code snippets), we believe
our findings can be generalized to other similar datasets [34],
[89], [90]. Additionally, our study has only explored errors

from function-level code generation tasks. There are many other
code generation tasks (e.g., class-level code generation [91]),
as well as other code-related tasks such as code summarization
and refactoring. In future work, it is interesting to investigate
whether these tasks share similar error characteristics with
function-level code generation errors.

Moreover, our study only covers Python programs, which
might not generalize to programming languages that are very
different from Python, such as PHP and Rust. We chose
Python because it is one of the most popular object-oriented
programming languages. In future work, we plan to expand
our study with programming tasks from other languages.

Finally, we have only experimented with six LLMs and one
prompting strategy in this study due to the intensive labeling
effort (i.e., 328 person-hours for labeling 557 incorrect code
snippets). Given that code generation with LLMs is a fast-
developing research field, we plan to expand our study by label-
ing errors from more recent code LLMs, e.g., MagiCoder [56],
CodeLlama [54], etc. Additionally, our findings may not
generalize to code generation errors with different prompting
strategies, e.g., chain-of-thought [92], self-debugging [63], etc.
It is worthwhile to investigate code generation errors with more
advanced prompting strategies in future work.
Threats to Construct Validity. In RQ3, we use the length of
the task description and the length of the correct solution to
estimate the task complexity. Although they may not be the
best metrics for such estimation, we believe this is a pragmatic
choice since there is no commonly used metric for measuring
task complexity for LLM’s code generation. In future work,
researchers may consider designing new metrics to estimate
the task complexity and investigate its correlation with LLM’s
code generation capabilities.

VII. CONCLUSION

This paper presents an empirical study on code generation
errors made by LLMs. We first derived a taxonomy of LLMs’
code generation errors based on six popular LLMs’ failure
cases on the HumanEval dataset [7] through open coding and
thematic analysis. We labeled a total of 557 errors committed
by these LLMs according to the taxonomy. We found that
these LLMs exhibited different distributions of semantic and
syntactic error characteristics. We further analyzed the bug-
fixing effort, the impact of task complexity, and the correlation
between test pass rates and different kinds of errors. In the end,
we discussed the implications of our study and propose future
research opportunities for improving the quality and reliability
of code LLMs.
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